Features of ionospheric effects of the solar eclipse on Оctober 25, 2022, in the morning
1Chernogor, LF 1V.N. Karazin Kharkiv National University, Kharkiv, Ukraine |
Kinemat. fiz. nebesnyh tel (Online) 2024, 40(2):37-53 |
https://doi.org/10.15407/kfnt2024.02.037 |
Язык: Ukrainian |
Аннотация: Solar eclipse (SE) leads to perturbations of all subsystems in the Earth — atmosphere — ionosphere — magnetosphere system and of geophysical fields. Each SE leads to a whole series of physical and chemical processes in the ionosphere. Along with the common features, each SE has its own peculiarities in the course of processes. They depend on the phase of solar activity, time of year, time of day, geographic coordinates, state of atmospheric and space weather, the magnitude of eclipse, etc. Therefore, the study of the effects of each new SE is an urgent scientific task. The purpose of this work is to describe the results of the analysis of the SE ionospheric effects features on October 25, 2022, which was observed shortly after sunrise, mainly at high latitudes. The data from a network of stations and navigation satellites moving over the region of partial SE were used for observations. It was found that the maximum decrease in total electron content (TEC) was 1.6…4.1 TECU, and its relative decrease reached 12…25 %. The maximum decrease in TEC was delayed with respect to the maximum magnitude of the SE by 18…33 min. The duration of the reaction to SE was 120…180 min, which exceeded the eclipse duration. |
Ключевые слова: electron density disturbance, high latitudes, ionosphere, morning time, solar eclipse, total electron content |
1. Chernogor L. F. (2013). Physical effects of solar eclipses in atmosphere and geospace: monograph. Kharkiv: V. N. Karazin Kharkiv National University Publ, 480 p [In Russian]. 2. Chernogor L. F., Garmash K. P., Zhdanko Y. H., Leus S. G., Luo Y. (2021). Features of ionospheric effects from the partial solar eclipse over the city of Kharkiv on 10 June 2021. Radio Phys. Radio Astron. 26(4), 326-343 [In Ukrainian]. https://doi.org/10.15407/rpra26.04.326 3. Chernogor L. F., Mylovanova L. I., Mylovanov Yu. B., Tsymbal A. M., Luo Y. (2021). Effects from the June 10, 2021 solar eclipse in the ionosphere over Kharkiv: results from ionosonde measurements. Visnyk of V. N. Karazin Kharkiv National University, series Radio Physics and Electronics. 35, 60-78 [In Ukrainian]. https://doi.org/10.26565/2311-0872-2021-35-06 4. Chernogor L. F., Mylovanov Yu. B., Dorokhov V. L., Podnos V. A., Tsymbal A. M., Shevelev M. B. (2022). TEC variations in equatorial ionosphere during June 21, 2020 solar eclipse. Visnyk of V. N. Karazin Kharkiv National University, series Radio Physics and Electronics. 36, 49-65. 5. Chernogor L. F., Mylovanov Yu. B., Luo Y. (2022). Effects from the June 10, 2021 solar eclipse in the high-latitude ionosphere: results of GPS observations. Radio Phys. Radio Astron. 27(2), 93-109. [In Ukrainian]. https://doi.org/10.15407/rpra27.02.093 6. Aa E., Zhang S.-R., Erickson P. J., Goncharenko L. P., Coster A. J., Jonah O. F., Lei J., Huang F., Dang T., Liu L. (2020). Coordinated ground-based and space-borne observations of ionospheric response to the annular solar eclipse on 26 December 2019. J. Geophys. Res.-Space. 125, id:e2020JA028296. https://doi.org/10.1029/2020JA028296 7. Adekoya B. J., Adebesin B. O., David T. W., Ikubanni S. O., Adebiyi S. J., Bolaji O. S., Chukwuma V. U. (2019). Solar-eclipse-induced perturbations at mid-latitude during the 21 August 2017 event. Ann. Geophys. 37, 171-182. https://doi.org/10.5194/angeo-37-171-2019 8. Afraimovich E. L., Kosogorov E. A., Lesyuta O. S. (2002). Effects of the August 11, 1999 total solar eclipse as deduced from total electron content measurements at the GPS network. J. Atmos. Sol.-Terr. Phys. 64, 1933-1941. https://doi.org/10.1016/S1364-6826(02)00221-3 9. Afraimovich E. L., Palamartchouk K. S., Perevalova N. P., Chernukhov V. V., Lukhnev A. V., Zalutsky V. T. (1998). Ionospheric effects of the solar eclipse of March 9, 1997, as deduced from GPS data. Geophys. Res. Lett. 25(4), 465-468. https://doi.org/10.1029/98GL00186 10. Barad R. K., Sripathi S., England S. L. (2022). Multi-instrument observations of the ionospheric response to the 26 December 2019 solar eclipse over Indian and Southeast Asian longitudes. J. Geophys. Res.-Space. 127, id:e2022JA030330. https://doi.org/10.1029/2022JA030330 11. Chapman S. (1932). The influence of a solar eclipse upon the upper atmospheric ionization. Monthly Not. Roy. Astron. Soc. 92, 413-420. https://doi.org/10.1093/mnras/92.5.413 12. Chauvenet W. (1960). Manual of Spherical and Practical Astronomy, 5-th ed. Vol.1. Philadelphia: J. B. Lippincott Co. 1891. Reprinted New York: Dover Publications, 704 p. 13. Cherniak I., Zakharenkova I. (2018). Ionospheric total electron content response to the great American solar eclipse of 21 August 2017. Geophys. Res. Lett. 45, 1199- 1208. https://doi.org/10.1002/2017GL075989 14. Chernogor L. F. (2016). Wave processes in the ionosphere over Europe that accompanied the solar eclipse of March 20, 2015. Kinematics and Phys. Celestial Bodies. 32(4), 196-206. https://doi.org/10.3103/S0884591316040024 15. Chernogor L. F. (2016). Atmosphere - ionosphere response to solar eclipse over Kharkiv on March 20, 2015. Geomagnetism and Aeronomy. 56(5), 592-603. https://doi.org/10.1134/S0016793216050030 16. Chernogor L. F., Garmash K. P. (2022). Ionospheric processes during the partial solar eclipse above Kharkiv on June 10, 2021. Kinematics and Phys. Celestial Bodies. 38(2), 61-72. https://doi.org/10.3103/S0884591322020039 17. Chernogor L. F., Garmash K. P., Guo Q., Luo Y., Rozumenko V. T., Zheng Y. (2022). Some features of the ionospheric radio wave characteristics over China observed during the solar eclipse of 21 June 2020. Radio Sci. 57(10), id:e2022RS007492. https://doi.org/10.1029/2022RS007492 18. Chernogor L. F., Garmash K. P., Guo Q., Rozumenko V. T., Zheng Y. (2022). Ionospheric effects of the 5-6 January 2019 eclipse over the People's Republic of China: results from oblique sounding. Ann. Geophys. 40, 585-603. https://doi.org/10.5194/angeo-40-585-2022 19. Chernogor L. F., Mylovanov Yu. B. (2020). Ionospheric effects of the August 11, 2018, solar eclipse over the People's Republic of China. Kinematics and Phys. Celestial Bodies. 36(6), 274-290. https://doi.org/10.3103/S0884591320060021 20. Chernogor L. F., Mylovanov Yu. B. (2022). Ionospheric effects of the June 10, 2021, solar eclipse in the Arctic. Kinematics and Phys. Celestial Bodies. 38(4), 197-209. https://doi.org/10.3103/S088459132204002X 21. Chukwuma V. U., Adekoya B. J. (2016). The effects of March 20 2015 solar eclipse on the F2 layer in the mid-latitude. Adv. Space Res. 58, 1720-1731. https://doi.org/10.1016/j.asr.2016.06.038 22. Coster A. J., Goncharenko L., Zhang S. R., Erickson P. J., Rideout W., Vierinen J. (2017). GNSS observations of ionospheric variations during the 21 August 2017 solar eclipse. Geophys. Res. Lett. 44, 12041-12048. https://doi.org/10.1002/2017GL075774 23. Goncharenko L. P., Erickson P. J., Zhang S.-R., Galkin I., Coster A. J., Jonah O. F. (2018). Ionospheric response to the solar eclipse of 21 August 2017 in Millstone Hill (42N) observations. Geophys. Res. Lett. 45, 4601-4609. https://doi.org/10.1029/2018GL077334 24. Guo Q., Chernogor L. F., Garmash K. P., Rozumenko V. T., Zheng Y. (2020). Radio monitoring of dynamic processes in the ionosphere over China during the partial solar eclipse of 11 August 2018. Radio Sci. 55(2), id:e2019RS006866. https://doi.org/10.1029/2019RS006866 25. Harjosuwito J., Husin A., Dear V., Muhamad J., Faturahman A., Bahar A., Erlansyah, Syetiawan A., Pradipta R. (2023). Ionosonde and GPS total electron content observations during the 26 December 2019 annular solar eclipse over Indonesia. Ann. Geophys. 41, 147-172. https://doi.org/10.5194/angeo-41-147-2023 26. Jonah O. F., Goncharenko L., Erickson P. J., Zhang S., Coster A., Chau J. L., de Paula E. R., Rideout W. (2020). Anomalous behavior of the equatorial ionization anomaly during the 2 July 2019 solar eclipse. J. Geophys. Res.-Space. 125, id:e2020JA027909. https://doi.org/10.1029/2020JA027909 27. Paulino I., Figueiredo C. A. O. B., Rodrigues F. S., Buriti R. A., Wrasse C. M., Paulino A. R., Barros D., Takahashi H., Batista I. S., Medeiros A. F., Batista P. P., Abdu M. A., de Paula E. R., Denardini C. M., Lima L. M., Cueva R. Y. C., Makela J. J. (2020). Atmospheric gravity waves observed in the nightglow following the 21 August 2017 total solar eclipse. Geophys. Res. Lett. 47, id:e2020GL088924. https://doi.org/10.1029/2020GL088924 28. Resende L. C. A., Zhu Y., Denardini C. M., Chen S. S., Chagas R. A. J., Da Silva L. A., Carmo C. S., Moro J., Barros D., Nogueira P. A. B., Marchezi J. P., PicanHo G. A. S., Jauer P., Silva R. P., Silva D., Carrasco J. A., Wang C., Liu Z. (2022). A multi-instrumental and modeling analysis of the ionospheric responses to the solar eclipse on 14 December 2020 over the Brazilian region. Ann. Geophys. 40, 191-203. https://doi.org/10.5194/angeo-40-191-2022 29. Stankov S. M., Bergeot N., Berghmans D., Bolse D., Bruyninx C., Chevalier J.-M., Clette F., De Backer H., De Keyser J., D'Huys E., Dominique M., Lemaire J. F., Magdaleni J., Marqu C., Pereira N., Pierrard V., Sapundjiev D., Seaton D. B., Stegen K., Van der Linden R., Verhulst T. G. W., West M. J. (2017). Multi-instrument observations of the solar eclipse on 20 March 2015 and its effects on the ionosphere over Belgium and Europe. J. Space Weather Space Clim. 7(A19). https://doi.org/10.1051/swsc/2017017 30. Sun Y.-Y., Chen C.-H., Su X., Wang J., Yu T., Xu H.-R., Liu J.-Y. (2023). Occurrence of nighttime irregularities and their scale evolution in the ionosphere due to the solar eclipse over East Asia on 21 June 2020. J. Geophys. Res.: Space Phys. 128. id:e2022JA030936. https://doi.org/10.1029/2022JA030936 31. Tsai H. F., Liu J. Y. (1999). Ionospheric total electron content response to solar eclipses. J. Geophys. Res. 104(A6), 12657-12668. https://doi.org/10.1029/1999JA900001 32. Zhang S.-R., Erickson P. J., Goncharenko L. P., Coster A. J., Rideout W., Vierinen J. (2017). Ionospheric bow waves and perturbations induced by the 21 August 2017 solar eclipse. Geophys. Res. Lett. 44, 12067-12073. https://doi.org/10.1002/2017GL076054