Determination of light curve parameters of poorly studied eclipsing variables using data from TESS and other sky surveys
| Marsakova, VI, Andronov, IL, Borshchenko, VO, Garbazhii-Romanchenko, IA, Lashkova, AD, Kreminska, SA, Dubovsky, PA, Dubovskyi, VV |
| Kinemat. fiz. nebesnyh tel (Online) 2025, 41(4):20-30 |
| https://doi.org/10.15407/kfnt2025.04.020 |
| Язык: Ukrainian |
Аннотация: A group of poorly studied eclipsing variables (the classification of which is marked as uncertain and/or the period of brightness changes is uncertain) has been studied with the using of the photometric observations of the TESS mission and NSVS, ASAS-SN sky- surveys. We also obtained some observations covering the brightness minima of our variables by our group using the telescopes at Astronomical Observatory on Kolonica Saddle (Slovakia) and Observatory and Planetarium in Hlohovec (Slovakia) during the “Variable-2024” astrocamp. The periods and classification were corrected. For NSV 575 and NSV 014 the periods were found for the first time, but it is doubtful that NSV 014 is an eclipsing variable, because there are no eclipses but the asymmetric wave is present, which indicates that the variable star can be re-classified as a low-amplitude pulsating one. Different methods were used for approximation of the light curves and further calculation of stellar system’s parameters such as eclipse depths and durations, values of reflection effect and effect of ellipticity of stars. The initial period was estimated using the periodogram based on the trigonometrical polynomial fit of high order (up to 10). For better approximation of the complete eclipsing phase curve, the “New Algol Variable” (NAV) software was used. The methods of “asymptotic parabolas” and “wall-supported asymptotic parabolas” were used for calculation of moments of eclipses, which use only near-eclipse part of the observations instead of a complete curve. These methods were implemented in the software MAVKA among a larger set of features. For the variables NSV 489 and NSV 1884, our moments of eclipses and the ones found in the literature, were used for the O – C curves. For NSV 489, the period was adjusted taking into account the slope of the O – C diagram. |
| Ключевые слова: ASAS-SN, astroinformatics, binary stars, data analysis, eclipsing variables, light curve analysis, NSVS, TESS |
1. Andronov I. L. (1994) (Multi-) Frequency variations of stars. Some methods and results. Odessa Astron. Publ. 7. 49-54.
2. Andronov I. L. (2003) Multiperiodic versus noise variations: mathematical methods. Astron. Soc. Pacif. Conf. Ser. 292. 391.
3. Andronov I. L. (2012) Phenomenological modeling of the light curves of algol-type eclipsing binary stars. Astrophys. 55. 536-550.
https://doi.org/10.1007/s10511-012-9259-0
4. Andronov I. L. (2020) Advanced time series analysis of generally irregularly spaced signals: Beyond the oversimplified methods. Knowledge discovery in big data from astronomy and Earth observation. 191.
https://doi.org/10.1016/B978-0-12-819154-5.00022-9
5. Andronov I. L., Andrych K. D., Antoniuk K. A., et al. (2017) Instabilities in Interacting Binary Stars. Astron. Soc. Pac. Conf. Ser. 511. P. 43.
https://doi.org/10.48550/arXiv.1702.02011.
6. Andronov I. L., Baklanov A. V. (2004) Algorithm of the artificial comparison star for the CCD photometry. Astronomical School's Report. 5. P. 264-272.
https://doi.org/10.18372/2411-6602.05.1264
7. Andronov I. L., Tkachenko M. G., Chinarova L. L. (2017) Comparative Analysis of Phenomenological Approximations for the Light Curves of Eclipsing Binary Stars with Additional Parameters. Astrophys. 60, N4. P.57.
https://doi.org/10.1007/s10511-017-9462-0
8. Andrych K. D., Andronov I. L., Chinarova L. L. (2017) Statistically optimal modeling of flat eclipses and exoplanet transitions. The wall-supported polynomial" (WSP) Algoritms. Odessa Astron. Publ. 30. P. 57-62.
https://doi.org/10.18524/1810-4215.2017.30.118521
9. Andrych K. D., Andronov I. L., Chinarova L. L. (2020) MAVKA: Program of statistically optimal determination of phenomenological parameters of extrema. Parabolic spline algorithm and analysis of variability of the semi-regular star Z UMa. J. Phys. Stud. 24, N 1. P. 1902.
https://doi.org/10.30970/jps.24.1902
10. Boyd D. (2012) VSX page.
URL: https://www.aavso.org/vsx_docs/39113/121/Phase%20plot_1.jpg.
11. Drake A. J., Djorgovski S. G., Mahabal A., et al. (2009) First results from the Catalina Real-time Transient Survey. Astrophys. J. 696, N 1. P. 870-884.
https://doi.org/10.1088/0004-637X/696/1/870
12. Gaia Collaboration, Vallenari A., Brown A. G. A., et al. (2023) Gaia Data Release 3: Summary of the content and survey properties. Astron. and Astrophys. 674. A1, 22.
https://doi.org/10.1051/0004-6361/202243940
13. Hoffmeister C. (1933) 115 neue Ver@nderliche. Astron. Nachr. 247, N 15. 281-284.
https://doi.org/10.1002/asna.19322471502
14. Hoffmeister C. (1963) Ver@nderliche Sterne am Shdhimmel. Verff. Sternw. Sonneberg. 6. P. 1-63.
https://doi.org/10.1515/9783112536162
15. International Variable Star Index. (2025) URL: https://www.aavso.org/vsx/
16. Kochanek C. S., Shappee B. J., Stanek K. Z. (2017) The all-sky automated survey for Su¬per¬novae (ASAS-SN) light curve server v1.0. Publs Astron. Soc. Pacif. 129, 104502.
https://doi.org/10.1088/1538-3873/aa80d9
17. Marsakova V. I., Andronov I. L. (1996) Local fits of signals with asymptotic branches. Odessa Astron. Publ. 9. 127-130.
18. Mikul Óek Z. (2015) Phenomenological modelling of eclipsing system light curves. Astron. and Astrophys. 584. A8, 13.
https://doi.org/10.1051/0004-6361/201425244
19. Richter G. A. (1969) Neue Ver@nderliche. Mitteil. Ver@nderliche Sterne. 5. 69-72.
20. Ricker G. R., Winn J. N., Vanderspek R., et al. (2014) Transiting Exoplanet Survey Satellite (TESS). Proc. SPIE. 9143, id. 914320, 15.
https://doi.org/10.1117/12.2063489
21. Tkachenko M. G., Andronov I. L., Chinarova L. L. (2016) Phenomenological parameters of the prototype eclipsing binaries Algol, Lyrae and W UMa. J. Phys. Stud. 20, N 4. 4902.
https://doi.org/10.30970/jps.20.4902
22. Vavilova I. B., Yatskiv Ya. S., Pakuliak L. K., et al. (2017) UkrVO Astroinformatics software and web-services. IAU Symp. 325. 361-362.
https://doi.org/10.1017/S1743921317001661
23. Woïniak P. R., Vestrand W. T., Akerlof C. W., et al. (2004) Northern Sky Variability Survey: Public data release. Astron. J. 127. 2436-2449.
https://doi.org/10.1086/382719
