Global manifestations of a unique geospace storm on May 10—13, 2024 in the F-region of the ionosphere

Рубрика: 
1Chernogor, LF, Bessarabova, VO
1V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2025, 41(5):40-56
https://doi.org/10.15407/kfnt2025.05.040
Язык: Ukrainian
Аннотация: 

Powerful non-stationary processes on the Sun lead to solar storms, and on Earth to geospace storms. Ionospheric storms are an integral part of geospace storms, they are extreme manifestations of ionospheric weather. Its variations have a significant impact on the life of a civilization. It has been established that the manifestations of storms significantly depend not only on the characteristics of solar and geospace storms, but also on the season, time of day, magnetic and geographical coordinates, etc. All this determines the relevance of studying each new ionospheric storm, and even more so a unique event. The purpose of this work is to study the features of the global manifestation of a unique geospace storm on May 10—13, 2024 in the F-region of the ionosphere. The main features of the global manifestation of a unique geospace storm on May 10—13, 2024 in the F-region of the ionosphere have been studied. The largest negative disturbances were observed on May 11, 2024, during the recovery phase of the geomagnetic storm. At most stations, the storm was strong or severe during the daytime. At night, manifestations of a strong, severe, and extreme storm were mainly observed. The storm of May 13, 2024 was less intense compared to the storm of May 11, 2024. During the daytime, it was minor and moderate, and at night, it was mainly strong and even very strong. Sometimes negative and positive ionospheric storms replaced each other. Positive ionospheric storms were weaker. The duration of the blackout tended to decrease with decreasing geographical latitude of the station.

Ключевые слова: blackout, critical frequency, F-region, ionosonde, ionospheric storm, space weather, storm index
References: 

1. Astafyeva E., Yasyukevich Y. V., Maletckii B., Oinats A., Vesnin A., Yasyukevich A. S. S., Syrovatskii S., Guendouz N. (2022). Ionospheric disturbances and irregularities during the 25-26 August 2018 geomagnetic storm. J. Geophys. Res. Space Phys., 127(1). e2021JA029843.
https://doi.org/10.1029/2021JA029843

2. Astafyeva E., Zakharenkova I., F'rster M. (2015). Ionospheric response to the 2015 St. Patrick's Day storm: A global multi-instrumental overview. J. Geophys. Res. Space Phys., 120(10). 9023-9037.
https://doi.org/10.1002/2015JA021629

3. Astafyeva E., Zakharenkova I., Huba J. D., Doornbos E., Van den IJssel J. (2017). Global ionospheric and thermospheric effects of the June 2015 geomagnetic disturbances: Multi-instrumental observations and modeling. J. Geophys. Res. Space Phys., 122(11). 11,716-11,742. https://doi.org/10.1002/2017JA024174
https://doi.org/10.1002/2017JA024174

4. Cherniak I., Zakharenkova I. (2017). New advantages of the combined GPS and GLONASS observations for high latitude ionospheric irregularities monitoring: case study of June 2015 geomagnetic storm. Earth Plan. Space. 69. 1-14.
https://doi.org/10.1186/s40623-017-0652-0

5. Chernogor L. F. (2025). A two-step geospace storm as a new tool of opportunity for experimentally estimating the threshold condition for the formation of a substorm current wedge. Ann. Geophys. 43(1). 15-35.
https://doi.org/10.5194/angeo-43-15-2025

6. Chernogor L. F. (2021). Physics of geospace storms, Space Sci. and Technol. 27, 3-77, 2021a.
https://doi.org/10.15407/knit2021.01.003

7. Chernogor L. F., Domnin I. F. (2014). Physics of geospace storms, Kharkiv: V. N. Karazin Kharkiv National University Publ., 2014.

8. Evans J. S., Correira J., Lumpe J. D., Eastes R. W., Gan Q., Laskar F. I., Aryal S., Wang W., Burns A. G., Beland S., Cai X., Codrescu M., England S., Greer K., Krywonos A., McClintock W. E., Plummer T., Veibell V. (2024). GOLD observations of the thermospheric response to the 10-12 May 2024 geomagnetic storm.
https://doi.org/10.22541/essoar.171865398.83614867/v1

9. Grandin M., Bruus E., Ledvina V. E., Partamies N., Barthelemy M., Martinis C., Dayton-Oxland R., Gallardo-Lacourt B., Nishimura Y., Herlingshaw K., Neethal T., Karvinen E., Lach D., Spijkers M., Bergstrand C. (2024). The geomagnetic superstorm of 10 May 2024: Citizen science observations.
https://doi.org/10.5194/egusphere-2024-2174

10. Hayakawa H., Ebihara Y., Mishev A., Koldobskiy S., Kusano K., Bechet S., Yashiro S., Iwai K., Shinbori A., Mursula K., Miyake F., Shiota D., Silveira M. V. D., Stuart R., Oliveira D. M., Akiyama S., Ohnishi K., Miyoshi Y. (2024). The Solar and Geomagnetic Storms in May 2024: A Flash Data Report.
https://doi.org/10.3847/1538-4357/ad9335

arXiv:2407.07665 [astro-ph.EP]

11. Karan D. K., Martinis C. R., Daniell R. E., Eastes R. W., Wang W., McClintock W. E., Michell R. G., England S. (2024). GOLD Observations of the Merging of the Southern Crest of the Equatorial Ionization Anomaly and Aurora During the 10-11 May 2024 Mother's Day Super Geomagnetic Storm.
https://doi.org/10.22541/essoar.171805504.42893378/v1

12. Kim J., Kwak Y. S., Lee C., Lee J., Kam H., Yang T. Y., Jee G., Kim Y. (2023). Observational evidence of thermospheric wind and composition changes and the resulting ionospheric disturbances in the European sector during extreme geomagnetic storms. J. Space Weather Space Clim., 13, 24.
https://doi.org/10.1051/swsc/2023025

13. Kruparova O., Krupar V., Szabo A., Lario D., Nieves-Chinchilla T., Oliveros J. C. M. (2024). Unveiling the Interplanetary Solar Radio Bursts of the 2024 Mother's Day Solar Storm. Astrophys. J. Lett., 970. L13 (7 p).
https://doi.org/10.3847/2041-8213/ad5da6

14. Mlynczak M. G., Hunt L. A., Nowak N., Marshall B. T., Mertens C. J. (2024). Global thermo¬spheric infrared response to the Mother's day weekend extreme storm of 2024. Geophys. Res. Lett., 51, e2024GL110701.
https://doi.org/10.1029/2024GL110701

15. Nava B., RodrRguez-Zuluaga J., Alazo-Cuartas K., Kashcheyev A., Migoya-OruJ Y., Radicella S. M., Amory-Mazaudier C., Fleury R. (2016). Middle-and low-latitude ionosphere response to 2015 St. Patrick's Day geomagnetic storm. J. Geophys. Res. Space Phys. 121(4). 3421-3438.
https://doi.org/10.1002/2015JA022299

16. Parker W. E., Linares R. (2024). Satellite Drag Analysis During the May 2024 Gannon Geomagnetic Storm. arXiv:2406.08617v2 [astro-ph.EP]
https://doi.org/10.2514/1.A36164

17. Piersanti M., Alberti T., Bemporad A., Berrilli F., Bruno R., Capparelli V., Carbone V., Cesaroni C., Consolini G., Cristaldi A., Del Corpo A., Del Moro D., Di Matteo S., Ermolli I., Fineschi S., Giannattasio F., Giorgi F., Giovannelli L., Guglielmino S. L., Laurenza M., Lepreti F., Marcucci M. F., Martucci M., MergP M., Pezzopane M., Pietropaolo E., Romano P., Sparvoli R., Spogli L., Stangalini M., Vecchio A., Vellante M., Villante U., Zuccarello F., Heilig B., Lichtenberger J. (2017). Comprehensive analysis of the geoeffective solar event of 21 June 2015: effects on the magnetosphere, plasmasphere, and ionosphere systems. Solar Phys. 292. 1-56.
https://doi.org/10.1007/s11207-017-1186-0

18. Regi M., Perrone L., Del Corpo A., Spogli L., Sabbagh D., Cesaroni C., Alfonsi L., Bagiacchi P., Cafarella L., Carnevale G., De Lauretis M., Di Mauro D., Di Pietro P., Francia P., Heilig B., Lepidi S., Marcocci C., Masci F., Nardi A., Piscini A., Redaelli G., Romano V., Sciacca U., Scotto C. (2022). Space weather effects observed in the Northern Hemisphere during November 2021 geomagnetic storm: The impacts on plasmasphere, ionosphere and thermosphere systems. Rem. Sens. 14. 22. 5765.
https://doi.org/10.3390/rs14225765

19. Singh R., Scipion D. E., Kuyeng K., Patilongo P. J. C., De La Jara C., Velasquez J. P., Flores R., Ivan E. (2024). Ionospheric Disturbances observed over the Peruvian sector during the Mother's Day Storm (G5-level) on May 10-12, 2024.
https://doi.org/10.22541/essoar.172108210.04033367/v1

20. Spogli L., Alberti T., Bagiacchi P., Cafarella L., Cesaroni C., Cianchini G., Coco I., Di Mauro D., Ghidoni R., Giannattasio F., Ippolito A., Marcocci C., Pezzopane M., Pica E., Pignalberi A., Perrone L., Romano V., Sabbagh D., Scotto C., Spadoni S., Tozzi R., Viola M. (2024). The effects of the May 2024 Mother's Day superstorm over the Mediterranean sector: from data to public communication.
https://doi.org/10.4401/ag-9117

21. Spogli L., Cesaroni C., Di Mauro D., Pezzopane M., Alfonsi L., Musicb E., Povero G., Pini M., Dovis F., Romero R., Linty N., Abadi P., Niraeni F., Husin A., Le Huy M., Lan T. T., La T. V., Pillat V. G., Floury N. (2016). Formation of ionospheric irregularities over Southeast Asia during the 2015 St. Patrick's Day storm. J. Geophys. Res. Space Phys. 121. 12,211-12,233.
https://doi.org/10.1002/2016JA023222

22. Spogli L., Sabbagh D., Regi M., Cesaroni C., Perrone L., Alfonsi L., Di Mauro D., Lepidi S., Campuzano S. A., Marchetti D., De Santis A., Malagnini A., Scotto C., Cianchini G., Shen X. H., Piscini A., Ippolito A. (2021). Ionospheric response over Brazil to the August 2018 geomagnetic storm as probed by CSES-01 and Swarm satellites and by local ground-based observations. J. Geophys. Res. Space Phys., 126(2). e2020JA028368.
https://doi.org/10.1029/2020JA028368

23. Yamazaki Y., Matzka J., da Silva M. V. S., Kervalishvili G., Korte M., Rauberg J. (2024). Assessment of Geomagnetic Activity for the Kp=9 «Gannon Storm» in May 2024 Based on Version 3.0 Hpo Indices.
https://doi.org/10.22541/essoar.171838396.68563140/v1

24. Yan Q., Yao H. B. (2024). Recent geomagnetic storms observed by Macau Science Satellite-1. Earth Planet. Phys., 8(4), 565-569.
https://doi.org/10.26464/epp2024047