The influence of turbulence on the variation of electric field intensity in the Earth’s atmosphere

Рубрика: 
1Kozak, LV, 1Petrenko, BA, Khalimonenko, NO, 2Kronberg, EA, Ballai, I
1Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
2Max Planck Institute, Göttingen, Germany
Kinemat. fiz. nebesnyh tel (Online) 2025, 41(6):43-57
https://doi.org/10.15407/kfnt2025.06.043
Язык: Ukrainian
Аннотация: 

This study examines the influence of turbulent mixing on the vertical profile of electric field intensity in the atmospheric boundary layer. It analyzes how meteorological conditions and thermodynamic stratification affect atmospheric conductivity and the structure of the electric field. It is shown that the turbulent diffusion coefficient K(z), which governs the vertical transport of electric charge, can vary significantly with height depending on the stratification regime of the atmosphere. Several models for describing K(z) are considered, including both empirical and theoretically grounded approaches, such as the Monin — Obukhov similarity theory. Calculations based on radiosonde data from the Norderney station (WMO 10113) during winter and summer seasons made it possible to trace seasonal differences in the vertical distributions of the turbulent diffusion coefficient and electric field intensity. Additionally, data from station 2TDJJ8J aboard RV Polarstern located near the Earth’s poles during polar summer — were analyzed. This provided a unique opportunity to compare changes in the electric field and turbulent diffusion coefficient across high-latitude regions of both hemispheres. The results revealed a consistent exponential decay of the electric field with altitude and regional differences in the diffusion gradient, reflecting distinct features of atmospheric stratification.

Ключевые слова: atmospheric boundary layer, atmospheric electric field, atmospheric stratification, electrical conductivity, Monin — Obukhov model, polar regions, radiosonde observations, turbulent diffusion
References: 

1. Arya P. S. Introduction to micrometeorology. San Diego: Academic Press, 2001. 420 p. (International Geophysics Series; 79).

2. Bering E. A. III, Few A. A., Benbrook J. R. The global electric circuit. Phys. Today. 1998. 51(10). 24-30.
https://doi.org/10.1063/1.882422

3. Cobb W. E., Wells H. J. The electrical conductivity of oceanic air and its correlation to global atmospheric pollution. J. Atmos. Sci. 1970. 27(5). 814-819.
https://doi.org/10.1175/1520-0469(1970)0272.0.CO;2

4. Foken T. 50 years of the Monin - Obukhov similarity theory. Boundary-Layer Meteorology. 2006. 119(3). 431-447.
https://doi.org/10.1007/s10546-006-9048-6

5. Harrison R. G. The global atmospheric electrical circuit and climate. Surveys in Geophys. 2004. 25(5). 441-484.
https://doi.org/10.1007/s10712-004-5439-8

6. Harrison R. G., Aplin K. L. Mid-nineteenth century smoke concentrations near London. Atmos. Environment. 2002. 36(25). 4037-4043.
https://doi.org/10.1016/S1352-2310(02)00334-5

7. Hoppel W. A., Gathman S. G. Determination of eddy diffusion coefficients from atmospheric electrical measurements. J. Geophys. Res. 1971. 76(6). 1467-1477.
https://doi.org/10.1029/JC076i006p01467

8. Kalinin A. V., Leont'ev N. V., Terent'ev A. M., Umnikov E. D. Integration of the equations of classical electrode-effect theory with aerosols. Radiophys. and Quantum Electronics. 2016. 58(11). 858-867.
https://doi.org/10.1007/s11141-016-9660-3

9. Kozak L. V. Turbulent processes in hydrodynamic and magnetohydrodynamic environments, Kyiv: Drukaryk, 2022. 236.

10. Kulkarni M. N. On the modeling of electrical boundary layer (electrode layer) and derivation of atmospheric electrical profiles, eddy diffusion coefficient and scales of electrode layer. J. Earth System Sci. 2010. 119(1). 75-86.
https://doi.org/10.1007/s12040-010-0003-z

11. Kulmala M., Petj T., Ehn M., Thornton J., Sipil M., Worsnop D. R., Kerminen V-M. Chemistry of atmospheric nucleation: on the recent advances on precursor characterization and atmospheric cluster composition in connection with atmospheric new particle formation. Ann. Rev. Phys. Chem. 2014. 65(1). 21-37.
https://doi.org/10.1146/annurev-physchem-040412-110014

12. Monin A. S. The structure of atmospheric turbulence. Theory of Probability & Its Applications. 1958. 3(3). 266-296.
https://doi.org/10.1137/1103023

13. Monin A. S., Obukhov A. M. Basic laws of turbulent mixing in the surface layer of the atmosphere. Contrib. Geophys. Inst. Acad. Sci. USSR. 1954. 24(151). 163-187.

14. Nicoll K. A., Harrison R. G. Vertical current flow through extensive layer clouds. J. Atmos. and Solar-Terr. Phys. 2009. 71(17-18). 2040-2046.
https://doi.org/10.1016/j.jastp.2009.09.011

15. Price C. Evidence for a link between global lightning activity and upper tropospheric water vapour. Nature. 2000. 406(6793). 290-293.
https://doi.org/10.1038/35018543

16. Rycroft M. J. Electrical processes coupling the atmosphere and ionosphere: An overview. J. Atmos. and Solar-Terr. Phys. 2006. 68, No. 3-5. P. 445-456.
https://doi.org/10.1016/j.jastp.2005.04.009

17. Rycroft M. J., Israelsson S., Price C. The global atmospheric electric circuit, solar activity and climate change. J. Atmos. and Solar-Terr. Phys. 2000. 62(17). P. 1563-1576.
https://doi.org/10.1016/S1364-6826(00)00112-7

18. Stull R. B. An introduction to boundary layer meteorology. Dordrecht: Springer, 1988. 666.
https://doi.org/10.1007/978-94-009-3027-8

19. Tinsley B. A., Zhou L. Initial results of a global circuit model with variable stratospheric and tropospheric aerosols. J. Geophys. Res.: Atmos. 2006. 111(D16). ID: D16205.