Possible evidences of extremely strong magnetic fields observed in a sunspot using spectro-polarimetry around the D3 line

Рубрика: 
Lozitsky, VG
Kinemat. fiz. nebesnyh tel (Online) 2025, 41(6):58-72
https://doi.org/10.15407/kfnt2025.06.058
Язык: Ukrainian
Аннотация: 

The main goal of our research is to search for super-strong magnetic fields in ’quiet’ sunspots without flares. Our method is based on Stokes V spectro-polarimetry in a wide spectral range – from –5 nm to +2.5 nm relative to the D3 He I line. The objects of the study are two simple sunspots of 35...40 Mm in diameter, which were observed on July 17 and 24, 2023, close to the disk center, with the heliocentric angles of about 18 degrees. The novelty of our study: in the second sunspot, we found characteristic spectral features at approximately –1.88 and –0.84 nm from D3 He I line, which can be strongly split Zeeman sigma components of the mentioned line for the following reasons: (a) their Stokes V signs are opposite, and amplitudes reach 5 %, significantly exceeding the measurement errors, (b) amplitudes of ’blue’ and ’red’ peaks change synchronously along the slit, (c) spectral profiles of both peaks are similar in shape and mutually anti-symmetrical. If the indicated spectral features are interpreted as a manifestation of a joint action of Zeeman and Doppler effects, then we can assume the existence of very fine-structured (spatially unresolved) jets in the sunspot, in which the magnetic field’s order of magnitude is 105 G, and the ascending plasma velocity reaches 700 km/s. If this interpretation is confirmed, it will be possible to take a new look onto two current problems in heliophysics: anomalously fast rotation of the corona at low latitudes and arising of superstrong magnetic fields in the chromosphere and corona.

Ключевые слова: magnetic fields, spectro-polarimetry in D3 line, Sun, sunspots, super-strong fields
References: 

1. Asensio Ramos A., Trujillo Bueno J., Landi Degl'Innocenti E. (2008). Advanced forward modeling and inversion of Stokes profiles resulting from the joint action of the Hanle and Zeeman effects. Astrophys. J. 683. 542-565.
https://doi.org/10.1086/589433

2. Durn J. S. C., Lagg A., Solanki S. K., van Noort M. (2020). Detection of the strongest magnetic field in a sunspot light bridge. Astrophys. J. 895(2). 129-146.
https://doi.org/10.3847/1538-4357/ab83f1

https://iopscience.iop.org/article/10.3847/1538-4357/ab83f1/meta

3. Frish S. E. (2020). Optical atom spectra. St.-Peterburg. Moscow. Krasnodar. 656.

4. Harvey J. W. (2012). Chromospheric magnetic field measurements in a flare and an active region filament. Solar Phys. 280. 69-81.
https://doi.org/10.1007/s11207-012-0067-9

5. Kleint L. (2017). First detection of chromospheric magnetic field changes during an X1-flare. Astrophys. J. 834, art. id. 26. 10.
https://doi.org/10.3847/1538-4357/834/1/26

6. Libbrecht T., de la Cruz Rodriguez J., Danilovic S., Leenaarts J., Pazira H. (2019). Chromospheric condensations and magnetic field in a C3.6-class flare studied via He I D3 spectro-polarimetry. Astron. and Astrophys. 621, id.A35, 21.
https://doi.org/10.1051/0004-6361/201833610

7. Livingston W., Harvey J. W., Malanushenko O. V., Webster L. (2006). Sunspots with the strongest magnetic fields. Solar Phys. 239. 41-68.
https://doi.org/10.1007/s11207-006-0265-4

8. Lozitska N. I., Yakovkin I. I., Lozitsky V. G. (2024). Unique spectral manifestations around the D3 line observed in the region close to the seismic source of a large solar flare. Mon. Notic. Roy. Astron. Soc.: Lett. 528. L1-L3.
https://doi.org/10.1093/mnrasl/slad163

9. Lozitsky V. G. (2016). Indications of 8-kilogauss magnetic field existence in the sunspot umbra. Advances in Space Res. 57. 398-407.
https://doi.org/10.1016/j.asr.2015.08.032

10. Nizamov B. A., Zimovets I. V., Golovin D. V., Sanin A. B., Litvak M. L., Tretyakov V. I., Mitrofanov I. G., Kozyrev A. S. (2018). New estimation of non-thermal electron energetics in the giant solar flare on 28 October 2003 based on Mars Odyssey observations. J. Atmos. and Solar-Terr. Phys. 179, 484-493.
https://doi.org/10.1016/j.jastp.2018.08.004

11. Quintero Noda С., Schlichenmaier R., Bellot Rubio L. R., et al. (2022). The European Solar Telescope. Astron. and Astrophys. 666. A21.

12. Schrter E. H., Whl H. (1975). Differential rotation, meridional and random motions of the solar Ca+ network. Solar Phys. 42. Iss. 3-16.
https://doi.org/10.1007/BF00153278

13. Stenflo J. O. (1973). Magnetic-field structure of the photospheric network. Solar Phys. 32, 41-63.
https://doi.org/10.1007/BF00152728

14. Stenflo J. O. (1985). LEST - a Large International Solar Telescope for the 1990'S / Large European Solar Telescope. Vistas in Astron. 28. 571-576.
https://doi.org/10.1016/0083-6656(85)90078-9

15. Unno W. (1956). Line formation of a normal Zeeman triplet. Publs Astron. Soc. Jap. 8. 108-125.
https://doi.org/10.1093/pasj/8.3-4.108

16. Van Noort M., Lagg A., Tiwari S. K., Solanki S. K. (2013). Peripheral downflows in sunspot penumbrae. Astron. and Astrophys. 557. id. A24, 14.
https://doi.org/10.1051/0004-6361/201321073

17. Vernazza J. E., Avrett E. H., Loeser R. (1981). Structure of the solar chromosphere. II. Models of the EUV brightness components of the quiet-sun. Astrophys. J. Suppl. Ser. 45. 635-725.
https://doi.org/10.1086/190731

18. Yakovkin I. I., Lozitsky V. G. (2023). Search for superstrong magnetic fields in active processes on the Sun using spectro-polarimetry within 15 angstroms around the D3 line. Mon. Notic. Roy. Astron. Soc. 523, 5812-5822.
https://doi.org/10.1093/mnras/stad1816