Cosmic ray streaming in the diffusion approximation
1Fedorov, YI 1Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine |
Kinemat. fiz. nebesnyh tel (Online) 2021, 37(3):3-23 |
https://doi.org/10.15407/kfnt2021.03.003 |
Start Page: Space Physics |
Язык: Ukrainian |
Аннотация: The propagation of cosmic rays in the interplanetary medium is considered based on the kinetic Fokker-Planck equation. The analytical expression for anisotropic part of cosmic ray distribution function is derived in the approximation of the small anisotropy. It is shown that under isotropic scattering of energetic charged particles on interplanetary magnetic field fluctuations the cosmic ray distribution function depends exponentially on the cosine of the angle between particle velocity and radial direction. The expression for the cosmic ray streaming density is obtained. It is shown that the value of the particle streaming density is defined by the spatial distribution of the cosmic ray density and by the temporal dependence of the particle density. The cosmic ray transport equations have been derived (the hyperdiffusion equation and the telegraph equation). On the basis of these equations the spatio-temporal distribution of solar cosmic ray intensity and the anisotropy of the particle angular distribution are investigated. |
Ключевые слова: cosmic rays, interplanetary medium, kinetic equation, transport equation |
1. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, New York, 1973; Nauka, Moscow, 1979).
2. B. A. Gal’perin, I. N. Toptygin, and A. A. Fradkin. Scattering of particles by magnetic inhomogeneities in a strong magnetic field, Zh. Exp. Theor. Phys. 33, 526 (1971).
3. A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series (Nauka, Moscow, 1981; Gordon and Breach, New York, 1986).
4. Yu. V. Sidorov, M. V. Fedoryuk, and M. I. Shabunin, Lectures on the Theory of Functions of a Complex Variable (Nauka, Moscow, 1976; Mir, Moscow, 1985).
5. I. N. Toptygin, Cosmic Rays in Interplanetary Magnetic Fields (Nauka, Moscow, 1983; Reidel, Dordrecht, 1985).
https://doi.org/10.1007/978-94-009-5257-7
6. V. I. Shishov. Propagation of high-energy solar protons in an interplanetary magnetic field, Geomagn. Aeron. 6, 223 (1966).
7. W. I. Axford. Anisotropic diffusion of solar cosmic rays, Planet. Space Sci. 13, 1301–1309 (1965).
https://doi.org/10.1016/0032-0633(65)90063-2
8. J. Beeck and G. Wibberenz. Pitch angle distributions of solar energetic particles and the local scattering properties of the interplanetary medium, Astrophys. J. 311, 437 (1986).
https://doi.org/10.1086/164784
9. J. W. Bieber and R. A. Burger. Cosmic-ray streaming in the Born approximation, Astrophys. J. 348, 597–607 (1990).
https://doi.org/10.1086/168266
10. J. W. Bieber, P. A. Evenson, and M. A. Pomerantz. Focusing anisotropy of solar cosmic rays, J. Geophys. Res.: Space Phys. 91, 8713 (1986).
https://doi.org/10.1029/JA091iA08p08713
11. L. I. Dorman and M. E. Katz. Cosmic ray kinetics in space, Space Sci. Rev. 70, 529–575 (1977).
https://doi.org/10.1007/BF02186896
12. W. Droge, Y. Y. Kartavych, B. Klecker, and G. A. Kovaltsov. Anisotropic three-dimensional focused transport of solar energetic particles in the inner heliosphere, Astrophys. J. 709, 912–919 (2010).
https://doi.org/10.1088/0004-637X/709/2/912
13. J. Dunkel, P. Talkner, and P. Hanggi. Relativistic diffusion processes and random walk models, Phys. Rev. D 75, 043001 (2007).
https://doi.org/10.1103/PhysRevD.75.043001
14. J. A. Earl. Diffusion of charged particles in a random magnetic field, Astrophys. J. 180, 227–238 (1973).
https://doi.org/10.1086/151957
15. J. A. Earl. Analytical description of charged particle transport along arbitrary guiding field configurations, Astrophys. J. 251, 739 (1981).
https://doi.org/10.1086/159518
16. F. Effenberger and Y. Litvinenko. The diffusion approximation versus the telegraph equation for modeling solar energetic particle transport with adiabatic focusing. Isotropic pitch angle scattering, Astrophys. J. 783, 15 (2014).
https://doi.org/10.1088/0004-637X/783/1/15
17. Yu. I. Fedorov. Cosmic-ray distribution function under anisotropic scattering of particles by magnetic-field fluctuations, Kinematics Phys. Celestial Bodies 35, 1–16 (2019).
https://doi.org/10.3103/S0884591319010021
18. Yu. I. Fedorov. The distribution function of solar cosmic rays under prolonged particle injection, Kinematics Phys. Celestial Bodies 35, 203–216 (2019).
https://doi.org/10.3103/S0884591319050039
19. Yu. I. Fedorov and B. A. Shakhov. Description of non-diffusive solar comic ray propagation in a homogeneous regular magnetic field, Astron. Astrophys. 402, 805–817 (2003).
https://doi.org/10.1051/0004-6361:20030169
20. L. A. Fisk and W. I. Axford. Anisotropies of solar cosmic rays, Sol. Phys. 7, 486–498 (1969).
https://doi.org/10.1007/BF00146151
21. T. J. Gombosi, J. R. Jokipii, J. Kota, et al. The telegraph equation in charged particle transport, Astrophys. J. 403, 377 (1993).
https://doi.org/10.1086/172209
22. K. Hasselmann and G. Wibberenz. Scattering charged particles by random electromagnetic fields, Z. Geophys. 34, 353 (1968).
23. K. Hasselmann and G. Wibberenz. A note of the parallel diffusion coefficient, Astrophys. J. 162, 1049 (1970).
https://doi.org/10.1086/150736
24. J. R. Jokipii. Propagation of cosmic rays in the solar wind, Rev. Geophys. Space Phys. 9, 27–87 (1971).
https://doi.org/10.1029/RG009i001p00027
25. J. E. Kunstmann. A new transport mode for energetic charged particles in magnetic fluctuations superposed on a diverging mean field, Astrophys. J. 229, 812 (1979).
https://doi.org/10.1086/157016
26. Y. E. Litvinenko and P. I. Noble. Comparison of the telegraph and hyperdiffusion approximations in cosmic ray transport, Phys. Plasmas 23, 062901 (2016).
https://doi.org/10.1063/1.4953564
27. Y. E. Litvinenko and R. Schlickeiser. The telegraph equation for cosmic-ray transport with weak adiabatic focusing, Astron. Astrophys. 554, A59 (2013).
https://doi.org/10.1051/0004-6361/201321327
28. M. A. Malkov and R. Z. Sagdeev. Cosmic ray transport with magnetic focusing and the "telegraph model, Astrophys. J. 808, 157 (2015).
https://doi.org/10.1088/0004-637X/808/2/157
29. J. Masoliver and G. H. Weiss. Finite-velocity diffusion, Eur. J. Phys. 17, 190–196 (1996).
https://doi.org/10.1088/0143-0807/17/4/008
30. L. I. Miroshnichenko and J. A. Perez-Peraza. Astrophysical aspects in the studies of solar cosmic rays, Int. J. Mod. Phys. A 23, 1–141 (2008).
https://doi.org/10.1142/S0217751X08037312
31. H. Moraal and K. G. McCracken. The time structure of ground level enhancement in solar cycle 23, Space Sci. Rev. 171, 85–95 (2012).
https://doi.org/10.1007/s11214-011-9742-7
32. N. A. Schwadron and T. I. Gombosi. A unifying comparison of nearly scatter free transport model, J. Geophys. Res.: Space Phys. 99, 19301 (1994).
https://doi.org/10.1029/94JA01737
33. E. V. Vashenyuk, Yu. V. Balabin, J. Perez-Peraza, et al. Some features of the sources of relativistic particles at the Sun in the solar cycles 21–23, Adv. Space Res. 38, 411–418 (2006).
https://doi.org/10.1016/j.asr.2005.05.012
34. H. J. Volk. Cosmic ray propagation in interplanetary space, Rev. Geophys. Space Phys. 13, 547–566 (1975).
https://doi.org/10.1029/RG013i004p00547