Identification of acoustic-gravity waves from satellite measurements
Klymenko, YO, 1Fedorenko, AK, Kryuchkov, EI, 1Cheremnykh, OK, Voytsechovska, AD, Selivanov, YO, 1Zhuk, IT 1Space Research Institute under NAS and National Space Agency of Ukraine, Kyiv, Ukraine |
Kinemat. fiz. nebesnyh tel (Online) 2021, 37(6):3-18 |
https://doi.org/10.15407/kfnt2021.06.003 |
Start Page: Dynamics and Physics of Solar System Bodies |
Язык: Ukrainian |
Аннотация: It is proposed a method for recognizing the types of linear acoustic gravity waves (AGWs) in the atmosphere from satellite measurements. It is shown that the polarization relations between fluctuations of wave parameters (velocity, density, temperature, and pressure) differ significantly for freely propagating waves and evanescent wave modes, which makes it possible to identify different types of atmospheric waves in the experimental data. It is constructed a diagnostic diagram, that allows us to determine the type of the wave, as well as the vertical direction of its propagation based on the phase shifts between parameters observed. Using the phase shifts between fluctuations of the velocity and the atmospheric thermodynamic parameters it can be determined not only the type of the wave, but also its spectral characteristics. The proposed method has been verified for identifying the polar wave disturbances in the measurements from low-orbit satellite Dynamics Explorer 2. The verification has been shown that AGW polarization relations in the thermosphere mainly correspond to the gravity branch of acoustic-gravity waves which are freely propagating from below. This conclusion agrees with the other results of AGW observations in the atmosphere and the ionosphere by ground-based and satellite methods. Evanescent waves on the considered orbits have been not observed. |
Ключевые слова: acoustic gravity wave, evanescent wave mode, isothermal atmosphere, polarization relations |
1. Fedorenko A. K. (2010) Energy balance of acoustic gravity waves above the polar caps according to the data of satellite measurements. Geomagn. Aeron. (Engl. Transl.) 50 (1). 107—118.
https://doi.org/10.1134/S0016793210010123
2. Fedorenko A. K., Zakharov I. V. (2012) Specific oscillatory mode in the polar thermosphere. Kosm. nauka tehnol. 18(2). 26—32.
https://doi.org/10.15407/knit2012.02.026
3. Fedorenko A. K., Kryuchkov Y. I. (2013) Wind control of the propagation of acoustic gravity waves in the polar atmosphere. Geomagn. Aeron. (Engl. Transl.) 53 (3). 377—388.
4. Fedorenko A. K., Kryuchkov Y. I. (2014) Observed Features of Acoustic Gravity Waves in the Heterosphere. Geomagn. Aeron. (Engl. Transl.) 54 (1), 109—116.
5. Chernogor L. F. (1999) Energetics of the processes occurring on the Earth, in the atmosphere and near-earth space in connection with the project “Early warning”. Kosm. nauka tehnol. 5 (1). 38—47,
6. Cheremnykh O. K., Fedorenko A. K., Kryuchkov E. I., Selivanov Y.A. (2019) Evanescent acoustic-gravity modes in the isothermal atmosphere: systematization, applications to the Earth’s and Solar atmospheres. Ann. Geophys. 37 (3). 405—415.
7. Cheremnykh O. K., Fedorenko A. K., Selivanov Y. A., Cheremnykh S. O. (2021) Continuous spectrum of evanescent acoustic-gravity waves in an isothermal atmosphere. Mon. Notic. Roy. Astron. Soc. 503 (4). 5545—5553.
8. Francis S. H. (1975) Global propagation of atmospheric gravity waves: A review. J. Atmos. Terr. Phys. 37. 1011—1054.
9. Fedorenko A. K., Kryuchkov E. I., Cheremnykh O.K., Klymenko Yu. O., Yampolski Yu. M. (2018) Peculiarities of acoustic-gravity waves in inhomogeneous flows of the polar thermosphere. J. Atmos. Solar-Terr. Phys. 178. 17—23.
10. Gossard E., Hooke W. (1975) Waves in the atmosphere: Atmospheric infrasound and gravity waves: Their generation and propagation. Elsevier Scientific Publishing Company. 456.
11. Hines C. O. (1960) Internal gravity waves at ionospheric heights. Can. J. Phys. 38. 1441—1481.
https://doi.org/10.1139/p60-150
12. Jones Walter L. (1969) Non-divergent oscillations in the Solar Atmosphere. Solar Phys. 7. 204—209.
https://doi.org/10.1007/BF00224898
13. Kundu P. (1990). Fluid Dynamics. New York: Elsevier: 638.
14. Lamb H. (1932). Hydrodynamics. New York: Dover. 362.
15. Roy A., Roy S., Misra A. P. (2019). Dynamical properties of acoustic-gravity waves in the atmosphere. J. Atmos. and Solar-Terr. Phys. 186. 78—81.
https://doi.org/10.1016/j.jastp.2019.02.009
16. Waltercheid R. L., Hecht J. H. (2003) A reexamination of evanescent acoustic-gravity waves: Special properties and aeronomical significance. J. Geophys. Res. 108 (D11). 4340.
https://doi.org/10.1029/2002JD002421