Stellar lifetime on the main sequence stage and maximal stellar mass for the Galaxy disc

1Zakhozhay, VA
1V. N. Karazin Kharkiv National University, Kharkiv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2013, 29(4):61-72
Start Page: Physics of Stars and Interstellar Medium
Language: Russian
Abstract: 

Generalized, approximated and interconsistent formulas were derived that describe the relationship between hydrogen burning time and zero age stellar mass for mass intervals and elemental composition of stars formed during the whole time of the Universe existence. Maximal values of masses for population I stars were estimated on the basis of statistical relations between stellar characteristics which are revealed to date and are in good agreement with observational data.

Keywords: formula, Galaxy, hydrogen combustion
References: 

1.G. S. Bisnovatyi-Kogan, Physical Questions of the Theory of Stellar Evolution (Nauka, Moscow, 1989) [in Russian].

2.C. De Jager, The Brightest Stars (Reidel, Dordrecht, 1980).
https://doi.org/10.1007/978-94-009-9030-2

3. Evolution of Stars. The Astronomical Encyclopedical Dictionary, Ed. by I. A. Klimishina and A.O. Korsun’ (Ivan Franko Univ., L’viv, 2003).

4.V. A. Zakhozhay, “Cosmic bodies of the Galaxy: classification and evolution,” Visn. Astron. Shkoli 3(2), 81–99 (2002).

5.V. A. Zakhozhay, “The problem of existence of planetary systems. I. Methods and ways of searching,” Visn. Astron. Shkoli 4(2), 34–54 (2005).

6.A. G. Masevich and A. V. Tutukov, Stellar Evolution: Theory and Observations (Nauka, Moscow, 1988) [in Russian].

7.V. G. Surdin, Birth of Stars (URSS, Moscow, 2001) [in Russian].

8.F. C. Adams and Gr. Laughlin, “A dying universe: the long-term fate and evolution of astrophysical objects,” Rev. Mod. Phys. 69, 337–372 (1997).
https://doi.org/10.1103/RevModPhys.69.337

9.Y. Alibert, I. Baraffe, P. H. Hauschilgt, and F. Allard, “Period-luminosity-color-radius relationships of Cepheids as a function of metallicity: evolutionary effects,” Astron. Astrophys. 344, 551–572 (1999).

10.M. Alongi, G. Bertelli, A. Bressan, et al., “Evolutionary sequences of stellar models with semiconvection and convective overshoot. I. Z = 0.008,” Astron. Astrophys., Suppl. Ser. 97, 851–871 (1993).

11.I. Appenzeller, “The evolution of a vibrationally unstable main-sequence star of 130 M Sun,” Astron. Astrophys. 5, 355–371 (1970).

12.D. Argast, M. Samland, O. E. Gerhard, and F.-K. Thielemann, “Metal-poor halo stars as tracers of ISM mixing processes during halo formation,” Astron. Astrophys. 356, 873–887 (2000).

13.I. Baraffe, A. Heger, and S. E. Woosley, “On the stability of very massive primordial stars,” Astrophys. J. 550, 890–896 (2001).
https://doi.org/10.1086/319808

14.I. Baraffe, Y. Alibert, D. Mera, et al., “Cepheid models based on self-consistent stellar evolution and pulsation calculations: the right answer?,” Astrophys. J. 499, L205–L209 (1998).
https://doi.org/10.1086/311377

15.A. Bressan, F. Fagotto, G. Bertelli, and C. Chiosi, “Evolutionary sequences of stellar models with new radiative opacities. II. Z = 0.02,” Astron. Astrophys., Suppl. Ser. 100, 647–664 (1993).

16.V. Bromm and R. B. Larson, “The first stars,” Annu. Rev. Astron. Astrophys. 42, 79–118 (2004).
https://doi.org/10.1146/annurev.astro.42.053102.134034

17.G. Bertelli, A. Bressan, C. Chiosi, et al., “Theoretical isochrones from models with new radiative opacities,” Astron. Astrophys., Suppl. Ser. 106, 275–302 (1994).

18.C. Charbonnel, G. Meynet, A. Maeder, et al., “Grids of stellar models. III. From 0.8 to 120 M ⊙ at Z = 0.004,” Astron. Astrophys., Suppl. Ser. 101, 415–419 (1993).

19.F. Fagotto, A. Bressan, G. Bertelli, and C. Chiosi, “Evolutionary sequences of stellar models with new radiative opacities. III. Z = 0.0004 and Z = 0.05,” Astron. Astrophys., Suppl. Ser. 104, 365–376 (1994).

20.F. Fagotto, A. Bressan, G. Bertelli, and C. Chiosi, “Evolutionary sequences of stellar models with new radiative opacities. IV. Z = 0.004 and Z = 0.008,” Astron. Astrophys., Suppl. Ser. 105, 29–38 (1994).

21.F. Fagotto, A. Bressan, G. Bertelli, and C. Chiosi, “Evolutionary sequences of stellar models with very high metallicity. V. Z = 0.1,” Astron. Astrophys., Suppl. Ser. 105, 39–45 (1994).

22.D. F. Figer, “An upper limit to the masses of stars,” Nature 434, 192–194 (2005).
https://doi.org/10.1038/nature03293

23.A. Heger, PhD Thesis (München Univ., Garching, 1998).

24.A. Heger, C. L. Fryuer, S. E. Woosley, et al., “How massive single stars end their life,” Astrophys. J. 591, 288–300 (2003).
https://doi.org/10.1086/375341

25.A. Heger, L. Jeannin, N. Langer, and I. Baraffe, “Pulsations in red supergiants with high L/M ratio. Implications for the stellar and circumstellar structure of supernova progenitors,” Astron. Astrophys. 327, 224–230 (1997).

26.A. Heger and N. Langer, “Presupernova evolution of rotating massive stars. II. Evolution of the surface properties,” Astrophys. J. 544, 1016–1035 (2000).
https://doi.org/10.1086/317239

27.A. Heger, N. Langer, and S. E. Woosley, “Presupernova evolution of rotating massive stars. I. Numerical method and evolution of the internal stellar structure,” Astrophys. J. 528, 368–396 (2000).
https://doi.org/10.1086/308158

28.R. M. Humphreys, “The space distribution and kinematics of supergiants,” Astron. J. 75, 602–623 (1970).
https://doi.org/10.1086/110995

29.C. A. Iglesias and F. J. Rogers, “Updated OPAL opacities,” Astrophys. J. 464, 943–953 (1996).
https://doi.org/10.1086/177381

30.R. P. Kudritzki, “Line-driven winds, ionizing fluxes, and ultraviolet spectra of hot stars at extremely low metallicity. I. Very massive O stars,” Astrophys. J. 577, 389–408 (2002).
https://doi.org/10.1086/342178

31.N. Langer, M. Kiriakidis, M. F. El Eid, et al., “The surface temperature of C/O-rich Wolf-Rayet Stars,” Astron. Astrophys. 192, 177–181 (1988).

32.R. B. Larson and S. Starfield, “On the formation of massive stars and the upper limit of stellar masses,” Astron. Astrophys. 13, 190–197 (1971).

33.P. Ledoux, “On the vibrational stability of gaseous stars,” Astrophys. J. 94, 537–548 (1941).
https://doi.org/10.1086/144359

34.U. Lee, “Asymptotic theory for nonadiabatic nonradial oscillations of stars,” Publ. Astron. Soc. Jpn. 37, L261–L277 (1985).

35.P. Marigo, C. Chiosi, and R.-P. Kudritzki, “Zero-metallicity stars. II. Evolution of very massive objects with mass loss,” Astron. Astrophys. 399, 617–630 (2003).
https://doi.org/10.1051/0004-6361:20021756

36.P. Marigo, L. Girardi, C. Chiosi, and P. R. Wood, “Zero-metallicity stars. I. Evolution at constant mass,” Astron. Astrophys. 371, 152–173 (2001).
https://doi.org/10.1051/0004-6361:20010309

37.K. Omukai and F. Palla, “Formation of the first stars by accretion,” Astrophys. J. 589, 677–687 (2003).
https://doi.org/10.1086/374810

38.J. C. B. Papaloizou, “Non-linear pulsations of upper main sequence stars. I. A perturbation approach,” Mon. Not. R. Astron. Soc. 162, 143–168 (1973).

39.J. C. B. Papaloizou, “Non-linear pulsations of upper main sequence stars. II. Direct numerical integrations,” Mon. Not. R. Astron. Soc. 162, 169–187 (1973).

40.L. Portinari, C. Chiosi, and A. Bressan, “Galactic chemical enrichment with new metallicity dependent stellar yields,” Astron. Astrophys. 334, 505–539 (1998).

41.C. M. Raiteri, M. Villata, and J. F. Navarro, “Simulation of Galactic chemical evolution. I. O and Fe abundances in a simple collapse model,” Astron. Astrophys. 315, 105–115 (1996).

42.D. Schaerer, “On the properties of massive population III stars and metal-free stellar populations,” Astron. Astrophys. 382, 28–42 (2002).
https://doi.org/10.1051/0004-6361:20011619

43.D. Schaerer, C. Charbonnel, G. Meynet, et al., “Grids of stellar models. IV. From 0.8 to 120 M ⊙ at Z = 0.040,” Astron. Astrophys., Suppl. Ser. 102, 339–342 (1993).

44.D. Schaerer, G. Meynet, A. Maeder, and G. Schaller, “Grids of stellar models. II. From 0.8 to 120 M ⊙ at Z = 0.008,” Astron. Astrophys., Suppl. Ser. 98, 523–527 (1993).

45.G. Schaller, D. Schaerer, G. Meynet, and A. Maeder, “New grids of stellar models from 0.8 to 120 M ⊙ at Z = 0.020 and Z = 0.001,” Astron. Astrophys., Suppl. Ser. 96, 269–331 (1992).

46.M. Schwarzschild and R. Hürm, “On the maximum mass of stable stars,” Astrophys. J. 129, 637–646 (1959).
https://doi.org/10.1086/146662

47.L. Siess, M. Livio, and J. Lattanzio, “Structure, evolution, and nucleosynthesis of primordial stars,” Astrophys. J. 570, 329–343 (2002).
https://doi.org/10.1086/339733

48.R. J. Talbot, “Nonlinear pulsations of unstable massive main-sequence stars. I. Small-amplitude tests of an approximation technique,” Astrophys. J. 163, 17–27 (1971).
https://doi.org/10.1086/150743