Seasonal changes on Jupiter. 2. The effect of Sun irradiation on the planet
1Vidmachenko, AP 1Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine |
Kinemat. fiz. nebesnyh tel (Online) 2016, 32(6):30-48 |
Start Page: Dynamics and Physics of Solar System Bodies |
Language: Russian |
Abstract: Our investigation of changes in the character of Jupiter's visual brightness since 1850, indicating a much more pronounced effect of 22.3-year-old Hale magnetic cycle of solar activity on the processes occurring in the troposphere at the level of the upper edge of clouds formation. The maximum value of the Jupiter’s integral brightness is near the maximum of the solar cycle over the last 165 years of Wolfnumber (about 1957). The minimal estimates of the brightness were obtained in 1855, when in the solar cycle number 12 Wolf number was minimal. Investigation of reflection characteristics of Jupiter hemispheres in the visual region of spectrum in 1962-2015 showed brightness increasing in the alternately northern and southern tropical and temperate regions during of its revolution around the Sun. Such a brightness changing and the increased activity of the different planet's hemispheres may indicate that periodically restructuring the global atmospheric circulation system, the structure of cloud layers and above clouds haze. This indicates that the observed variations in the reflective properties of the Jupiter's latitudinal belts are associated with tilting of rotation axes of the planet and its magnetic field to the orbital plane; i. e. about the existence of seasonal reconstruction of the atmosphere. Comparison of the time dependence of activity factor Аj for Jupiter’s hemispheres in the visible spectrum with a change of solar activity’ index R, it shows that from 1962 to 1995, these parameters have changed almost simultaneously with some lag of reaction in the visible cloud layer of the planet's atmosphere on the Sun s irradiation mode. Analysis of the dependence of reflection characteristics of the Jupiter’s hemispheres shows the lag for -6 years, as a reaction to a 21% changing of irradiation of different hemispheres during the motion of the planet in its orbit. This value coincides with the value the radiative relaxation time of hydrogen-helium atmosphere in conditions of Jupiter. After 1997 has occurred discrepancy of their course. This can be explained by the influence of incoherent the mentioned causes on the planet's atmosphere. |
Keywords: Jupiter, Jupiter's atmosphere, seasonal changes |
1.A. P. Vid’machenko, “The electrophotometry of Saturn. I. The distribution of brightness over the equatorial regions in the spectral range of 0.3–0.6 micron,” Astrom. Astrofiz., No. 47, 70–75 (1982).
2.A. P. Vid’machenko, “Electrophotometry of Saturn. II. Spectral brightness distribution along the central meridian,” Astrom. Astrofiz., No. 51, 56–62 (1984).
3.A. P. Vid’machenko, “Giant planets: Theoretical and observational aspects,” Astron. Vestn. 25, 277–292 (1991).
4.A. P. Vidmachenko, “Seasonal changes in the reflection characteristics of Saturn in 4 moments of Saturnian equinox,” in Proc. 17th Int. Sci. Conf. “Astronomy School for Young Scientists,” Zhytomyr, Ukraine, May 20–22, 2015, Program and Abstracts (Zhytomyr. Derzh. Univ. im. Ivana Franka, Zhytomyr, 2015), pp. 10–13.
5.A. P. Vidmachenko, “Influence of solar activity on the seasonal variation of methane absorption at Saturn,” in Proc. 17th Int. Sci. Conf. “Astronomy School for Young Scientists,” Ukraine, May 20–22, 2015, Program and Abstracts (Zhitomir. Derzh. Univ. im. Ivana Franka, Zhitomir, 2015), pp. 14–16.
6.A. P. Vidmachenko, “Seasons on Saturn. I. Changes in reflecting characteristics of the atmosphere at 1964–2012,” Visn. Astron. Shk. 11, 1–14 (2015).
7.A. P. Vidmachenko, “Seasons on Saturn. II. Influence of solar activity on variation of methane absorption,” Visn. Astron. Shk. 11, 15–23 (2015).
8.Yu. I. Vitinskii, A. I. Ol’, and B. I. Sazonov, The Sun and the Earth’s Atmosphere (Gidrometeoizdat, Leningrad, 1976) [in Russian].
9.S. M. Gaisin, “Photoelectric spectrophotometry of Saturn in the 0.32–0.60 micron range,” Tr. Astrofiz. Inst. Akad. Nauk Kaz. SSR 35, 35–65 (1979).
10.D. L. Harris, “Photometry and colorimetry of planets and satellites,” in Planets and Satellites, Ed. by G. P. Kuiper and B. M. Middlehurst (Univ. of Chicago Press, Chicago, 1961; Mir, Moscow, 1967), pp. 272–342.
11.J. R. Herman and R. A. Goldberg, Sun, Weather, and Climate (NASA, Washington, DC, 1978; Gidrometeoizdat, Leningrad, 1981) [in Russian].
12.G. de Vaucouleurs, “Photometrie des surfaces planétaires,” in Surfaces and Interiors of Planets and Satellites, Ed. by A. Dollfus (Academic, London, 1970; Mir, Moscow, 1975), p. 225.
13.M. S. Dement’ev and A. V. Morozhenko, “Zones and belts of the Jovian disk — Differences in the vertical structure of cloud layers,” Astron. Vestn. 24, 275–287 (1990).
14.V. M. Klimenko, “Multicolor photometry of details of the Jovian disk. II. Absolute reflectivity,” Sol. Syst. Res. 14, 116–120 (1980).
15.V. M. Klimenko, “Results of studies of the reflectivity of Jovian disk features during 1977–1979,” in Physics of Planetary Atmospheres. Collection of Scientific Papers (Naukova Dumka, Kiev, 1981), pp. 63–91 [in Russian].
16.V. D. Krugov, “Time variations in ultraviolet absorption in the continuous spectrum of Jupiter and Saturn,” Astron. Vestn. 6, 168–171 (1976).
17.G. V. Kuklin, “The Sun and the Sun-Earth connection,” in International Geosphere-Biosphere Programme “Global Change” (Nauka, Moscow, 1989), Vol. 1, pp. 24–33 [in Russian].
18.E. N. Lorenz, The Nature and Theory of the General Circulation of the Atmosphere (World Meteorol. Organ., 1967; Gidrometeoizdat, Leningrad, 1973).
19.L. I. Miroshnichenko, Solar Activity and the Earth (Nauka, Moscow, 1981) [in Russian].
20.A. V. Morozhenko, “Zones and belts of the Jovian disk. Overcloud gas layer,” Astron. Vestn. 24, 211–220 (1990).
21.G. I. Morskoi, “On the convectional pressure-change theory,” Meteorol. Gidrol., No. 1, 123–142 (1967).
22.B. Sh. Rubashev, Problems of Solar Activity (Nauka, Moscow, 1964) [in Russian].
23.T. I. Salamakhina and L. P. Sorokina, “The factors of Jovian activity during 1976–1977,” Tr. Astrofiz. Inst. Akad. Nauk. Kaz. SSR, No. 35, 66–71 (1979).
24.B. A. Smith and G. E. Hunt, “Motions and morphology of clouds in the atmosphere of Jupiter,” in Jupiter: Studies of the Interior, Atmosphere, Magnetosphere and Satellites, Ed. by T. Gerels and M. S. Matthews (Univ. of Arizona Press, Tucson, 1976; Mir, Moscow, 1978–1979), pp. 564–585.
25.L. P. Sorokina, “Maximal contrasts on the Jovian disc in 1962–1969,” Astron. Tsirk., No. 749, 4–7 (1973).
26.V. G. Teifel, “Morphology of molecular absorption on the disk of Jupiter,” in Jupiter: Studies of the Interior, Atmosphere, Magnetosphere and Satellites, Ed. by T. Gerels and M. S. Matthews (Univ. of Arizona Press, Tucson, 1976; Mir, Moscow, 1978–1979), pp. 441–485.
27.V. G. Fesenkov, “The phenomena observed on Jupiter. The origin of dark bands,” Izv. Astrofiz. Inst., Akad. Nauk Kaz. SSR 1 (1–2), 239–251 (1955).
28.J. W. Chamberlain, Theory of Planetary Atmospheres (Academic, New York, 1978; Mir, Moscow, 1981).
29.S. M. Shugrin and A. M. Obut, Solar Activity and the Biosphere (Nauka, Novosibirsk, 1986) [in Russian].
30.M. S. Eigenson, Essays on the Physical and Geographical Manifestations of Solar Activity (L’vov. Nats. Univ. im. Ivana Franko, L’vov, 1957) [in Russian].
31.M. S. Eigenson, M. N. Gnevyshev, A. I. Ol’, and B. M. Rubashev, Solar Activity and its Terrestrial Manifestations (OGIZ, Moscow, 1948) [in Russian].
32.C. J. Banos, “Contribution to the study of Jupiter’s atmosphere,” Icarus 15, 58–67 (1971).
https://doi.org/10.1016/0019-1035(71)90034-0
33.R. F. Beebe, G. S. Orton, and R. A. West, “Time-variable nature of the Jovian cloud properties and thermal structure: an observational perspective,” in Time-Variable Phenomena in the Jovian System, Ed. by M. J. S. Belton, R. A.West, and J. Rahe (NASA, Washington, DC, 1989), pp. 245–288.
34.R. F. Beebe, R. M. Suffs, and T. Little, “Seasonal north-south asymmetry in solar radiation incident on Jupiter’s atmosphere,” Icarus 66, 359–365 (1986).
https://doi.org/10.1016/0019-1035(86)90164-8
35.J. M. Dlugach, A. V. Morozhenko, A. P. Vid’machenko, and E. G. Yanovitskij, “Investigations of the optical properties of Saturn’s atmosphere carried out at the Main Astronomical Observatory of the Ukrainian Academy of Sciences,” Icarus 54, 319–336 (1983).
https://doi.org/10.1016/0019-1035(83)90201-4
36.P. Drossart, R. Courtin, S. Atreya, and A. Tokunaga, “Variations in the Jovian atmospheric composition and chemistry,” in Time-Variable Phenomena in the Jovian System, Ed. by M. J. S. Belton, R. A. West, and J. Rahe (NASA, Washington, DC, 1989), pp. 344–362.
37.F. M. Flasar, “Temporal behavior of Jupiter’s meteorology,” in Time-Variable Phenomena in the Jovian System, Ed. by M. J. S. Belton, R. A. West, and J. Rahe (NASA, Washington, DC, 1989), pp. 324–343.
38.J. H. Focas, “Activity in Jupiter’s atmospheric belts between 1904 and 1963,” Icarus 15, 56–57 (1971).
https://doi.org/10.1016/0019-1035(71)90033-9
39.J. H. Focas and C. J. Banos, “Photometric study of the atmospheric activity on the planet Jupiter and peculiar activity in its equatorial area,” Ann. Astrophys. 27, 36–45 (1964).
40.L. V. Gallis and J. E. Nealy, “Temperature UV variability and its effect on stratospheric thermal structure and trace constituents,” Geophys. Res. Lett. 5, 249–252 (1978).
https://doi.org/10.1029/GL005i004p00249
41.P. J. Gierasch and R. M. Goody, “Radiative time constant in the atmosphere of Jupiter,” J. Atmos. Sci. 26, 979–980 (1969).
https://doi.org/10.1175/1520-0469(1969)026<0979:RTCITA>2.0.CO%3B2
42.J. S. Hall and L. A. Rilley, “A photometric study of Saturn and its rings,” Icarus 23, 144–156 (1974).
https://doi.org/10.1016/0019-1035(74)90002-5
43.D. L. Hays, D. A. Latham, and S. Hays, “Measurements of the monochromatic flux from Vega in the nearinfrared,” Astrophys. J. 197, 587–592 (1975).
https://doi.org/10.1086/153547
44.W. M. Irvine, T. Simon, D. H. Menzel, et al., “Multicolor photoelectric photometry of the brighter planets. II. Observations from le Houga Observatory,” Astron. J. 73, 251–264 (1968).
https://doi.org/10.1086/110626
45.W. M. Irvine, T. Simon, D. H. Menzel, et al., “Multicolor photoelectric photometry of the brighter planets. III. Observations from Boyden observatory,” Astron. J. 73, 807–823 (1968).
https://doi.org/10.1086/110702
46.V. M. Klimenko, A. V. Morozhenko, and A. P. Vid’machenko, “Phase effect for the brightness coefficient of the central disk of Saturn and features of Jupiter’s disk,” Icarus 42, 354–357 (1980).
https://doi.org/10.1016/0019-1035(80)90101-3
47.T. Kostiuk, F. Espenak, M. J. Mumma, et al., “Variability of ethane on Jupiter,” Icarus 72, 394–410 (1982).
https://doi.org/10.1016/0019-1035(87)90182-5
48.T. Kuroda, A. S. Medvedev, and P. Hartogh, “Parameterization of radiative heating and cooling rates in the stratosphere of Jupiter,” Icarus 242, 149–157 (2014).
https://doi.org/10.1016/j.icarus.2014.08.001
49.G. S. Orton, “Spatially resolved absolute spectral reflectivity of Jupiter: 3390–8400 Å,” Icarus 26, 159–174 (1975).
https://doi.org/10.1016/0019-1035(75)90077-9
50.G. S. Orton, P. A. Yanamandra-Fisher, J. Caldwell, et al., “Spatial organization and time dependence of Jupiter’s tropospheric temperatures, 1980–1993,” Science 265, 625–631 (1994).
https://doi.org/10.1126/science.265.5172.625
51.A. S. Ovsak, V. G. Teifel, A. P. Vid’machenko, and P. G. Lysenko, “Zonal differences in the vertical structure of the cloud cover of Jupiter from the measurements of the methane absorption bands at 727 and 619 nm,” Kinematics Phys. Celestial Bodies 31, 119–130 (2015).
https://doi.org/10.3103/S0884591315030058
52.B. M. Peek, The Planet Jupiter (Faber & Faber, London, 1958).
53.C. B. Pilcher and T. B. McCord, “Narrow-band photometry of the bands of Jupiter,” Astrophys. J. 165, 195–201 (1971).
https://doi.org/10.1086/150887
54.R. Prinz, “The atmospheric activity of the planet Jupiter: Part I: From 1964 to 1968 in yellow light,” Icarus 15, 68–73 (1971).
https://doi.org/10.1016/0019-1035(71)90035-2
55.R. Prinz, “The atmospheric activity of the planet Jupiter: Part II: Short-term variations in five spectral ranges,” Icarus 15, 74–79 (1971).
https://doi.org/10.1016/0019-1035(71)90036-4
56.E. J. Reese, “Jupiter: Its red spot and other features in 1969–1970,” Icarus 14, 343–354 (1971).
https://doi.org/10.1016/0019-1035(71)90005-4
57.E. J. Reese, “Jupiter: Its red spot and disturbances in 1970–1971,” Icarus 17, 57–72 (1972).
https://doi.org/10.1016/0019-1035(72)90046-2
58.E. J. Reese, “Jupiter’s Red Spot in 1968–1969,” Icarus 12, 249–257 (1970).
https://doi.org/10.1016/0019-1035(70)90079-5
59.E. J. Reese and B. A. Smith, “A rapidly moving spot on Jupiter’s north temperate belt,” Icarus 5, 248–257 (1966).
https://doi.org/10.1016/0019-1035(66)90034-0
60.E. J. Reese and B. A. Smith, “Evidence of vorticity in the great red spot of Jupiter,” Icarus 9, 474–486 (1968).
https://doi.org/10.1016/0019-1035(68)90041-9
61.E. J. Reese and H. G. Solberg, “Recent measures of the latitude and longitude of Jupiter’s red spot,” Icarus 5, 266–273 (1966).
https://doi.org/10.1016/0019-1035(66)90036-4
62.V. K. Rozenbush, F. K. Rspaev, K. I. Churyumov, et al., “Variations of the rates of gas and dust production in comet Halley,” Sov. Astron. Lett. 15, 155 (1989).
63.A. Sanchez-Lavega and R. Rodtigo, “Ground based observations of synoptic cloud systems in southern equatorial to temperate latitudes of Jupiter from 1975 to 1983,” Astron. Astrophys. 148, 67–78 (1985).
64.H. G. Solberg, “Jupiter’s Red Spot in 1966–1967,” Icarus 9, 212–216 (1968).
https://doi.org/10.1016/0019-1035(68)90015-8
65.H. G. Solberg, “A 3-month oscillation in the longitude of Jupiter’s red spot,” Planet. Space Sci. 17, 1573–1580 (1969).
https://doi.org/10.1016/0032-0633(69)90146-9
66.A. F. Steklov, A. P. Vidmachenko, and N. F. Miniailo, “Seasonal variations in the atmosphere of Saturn,” Sov. Astron. Lett. 9, 135–136 (1983).
67.P. H. Stone, “The meteorology of the Jovian atmosphere,” in Jupiter: Studies of the Interior, Atmosphere, Magnetosphere and Satellites, Ed. by T. Gerels and M. S. Matthews (Univ. of Arizona Press, Tucson, 1976; Mir, Moscow, 1978–1979), pp. 586–618 (1976).
68.V. G. Tejfel, V. D. Vdovichenko, N. V. Sinyaeva, et al., “Spectrophotometry of zonal cloud structure variations on Jupiter, 1988–1993,” J. Geophys. Res.: Planets 99, 8411–8423 (1994).
https://doi.org/10.1029/94JE00609
69.L. M. Trafton and P. H. Stone, “Radiative-dynamical equilibrium states for Jupiter,” Astrophys. J. 188, 649–656 (1974).
https://doi.org/10.1086/152759
70.A. P. Vidmachenko, “Absolute electrophotometry of features of Saturn’s disc,” in Physics of Planetary Atmospheres. Collection of Scientific Papers (Naukova Dumka, Kiev, 1981), pp. 113–132 [in Russian].
71.A. P. Vidmachenko, “Variations in the brightness of celestial objects in astronomical observations mount Maidanak,” Kinematics Phys. Celestial Bodies 10 (5), 52–56 (1994).
72.A. P. Vidmachenko, “Activity of processes in the atmosphere of Jupiter,” Kinematics Phys. Celestial Bodies 1 (5), 101–102 (1985).
73.A. P. Vidmachenko, “Reflectivity of Saturn’s south equatorial region from 1977 through 1981,” Sol. Syst. Res. 18, 123–128 (1985).
74.A. P. Vidmachenko, “Some dynamical parameters of the atmosphere of Jupiter,” Kinematics Phys. Celestial Bodies 2 (1), 54–57 (1986).
75.A. P. Vidmachenko, “Manifestation of seasonal variations in the atmosphere of Saturn,” Kinematics Phys. Celestial Bodies 3 (6), 9–12 (1987).
76.A. P. Vidmachenko, “Observable signs of internal waves in Jupiter’s atmosphere,” Kinematics Phys. Celestial Bodies 4 (4), 40–46 (1987).
77.A. P. Vidmachenko, “Temporal changes in methane absorption in Jupiter’s atmosphere,” Kinematics Phys. Celestial Bodies 13 (6), 21–25 (1997).
78.A. P. Vidmachenko, “Seasonal variations in the optical characteristics of Saturn’s atmosphere,” Kinematics Phys. Celestial Bodies 15, 320–331 (1999).
79.A. P. Vidmachenko, “Variations in reflective characteristics of Jupiter’s atmosphere,” Sol. Syst. Res. 33, 464–469 (1999).
80.A. P. Vidmachenko, “Influence of solar activity on seasonal variations of methane absorption in the atmosphere of Saturn,” Kinematics Phys. Celestial Bodies 31, 131–140 (2015).
https://doi.org/10.3103/S088459131503006X
81.A. P. Vidmachenko, “Seasonal changes of methane absorption in the Saturn atmosphere,” in Proc. 46th Lunar and Planetary Science Conf., Woodlands, TX, Mar. 16–20, 2015, LPI Contribution No. 1832, 1051.
82.A. P. Vidmachenko, “Solar activity influence on seasonal changes in Saturn’s atmosphere,” in Proc. 46th Lunar and Planetary Science Conf., Woodlands, TX, Mar. 16–20, 2015, LPI Contribution No. 1832, 1052.
83.A. P. Vidmachenko, “Seasonal changes on Jupiter: 1. Factor of activity of the hemispheres,” Kinematics Phys. Celestial Bodies 32, 189–195 (2016).
https://doi.org/10.3103/S0884591316040073
84.A. P. Vidmachenko, Zh. M. Dlugach, and A. V. Morozhenko, “Nature of the optical nonuniformity in Saturn’s disk,” Sol. Syst. Res. 17, 164–171 (1984).
85.A. P. Vidmachenko, A. F. Steklov, and N. F. Minyailo, “Seasonal activity on Jupiter?” Sov. Astron. Lett. 10, 289–290 (1984).
86. Voyager Encounters Jupiter (NASA Jet Propul. Lab., Pasadena, CA, 1979).
87.R. Wagener and J. Caldwell, “Strong north/south asymmetry in the Jovian stratosphere,” Icarus 74, 141–152 (1988).
https://doi.org/10.1016/0019-1035(88)90036-X
88.R. A. West, “Spatially resolved methane band photometry of Jupiter: II. Analysis of the south equatorial belt and the south tropical zone reflectivity,” Icarus 38, 34–53 (1979).
https://doi.org/10.1016/0019-1035(79)90083-6