The physical effects of Lipetsk meteoroid. 1

1Chernogor, LF
1V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2019, 35(4):37-59
https://doi.org/10.15407/kfnt2019.04.037
Start Page: Dynamics and Physics of Solar System Bodies
Language: Russian
Abstract: 

This study aims at estimating a few physical effects associated with the passage via the atmosphere and airburst of the Lipetsk meteoroid (Russia) on June 21, 2018. The initial kinetic energy of the meteoroid was equal to approximately 11.7 TJ or 2.8 kt TNT. About 10.4 % or 1.22 TJ of the initial kinetic energy of the celestial body transformed into a flare. The meteoroid was found to be stony with the matter density of 3.3 t/m3. The celestial body moved along the trajectory inclined at angle of approximately 79° to the horizon. The initial mass of the body was equal to about 113 t, its initial speed 14.4 km/s, and the initial diameter 4 m. The altitude of the Lipetsk meteoroid explosion was about 27 km, and the explosion length approximately 3.75 km. Comprehensive modeling of the processes launched by the meteoroid passage through all geospheres has been performed. Mechanical, optical, and gas-dynamic effects associated with the passage of the Lipetsk meteoroid. The main release of energy (1013 J) is shown to occur at approximately 25...27 km altitude where the rate of mass loss attains approximately 130...140 t/s, the deceleration about 21 km/s2. In the vicinity of the meteoroid explosion, the meteoroid speed decreased by about 12 %, and its mass by approximately 16 %. The main parameters of shock wave have been estimated. The shock wave energy and power are equal to approximately 10 TJ and 0.8 TW, respectively. At the epicenter of the meteoroid explosion, the pressure at the shock reached ≈140 Pa. This turns out not to be enough for causing building destruction. The energy and optical radiation power were equal to 1.22 TJ and 2...3 TW, respectively. The flare energy was by 6 orders of magnitude less than that needed for causing ignition of materials and fires in epicenter region. The relative disturbances in air pressure at ionospheric heights above the explosion epicenter attained tens or even hundreds per cents.

Keywords: complex simulation, gas-dynamical effects, mechanical effects, meteoroid, optical effects
References: 

1. Alpatov V. V., Burov V. N., Vagin J. P., Galkin K. A., Givishvili G. V., Gluhov J. V., Davidenko D. V., Zubachev D. S., Ivanov V. N., Karhov A. N., Kolomin M. V., Korshunov V. A., Lapshin V. B., Leshenko L. N., Lysenko D. A., Minligareev V. T., Morozova M. A., Perminova E. S., Portnyagin J. I., Rusakov J. S., Stal N. L., Syroeshkin A. V., Tertyshnikov A. V., Tulinov G. F., Chichaeva M. A., Chudnovsky V. S., Shtyrkov A. Y. (2013) Geophysical conditions at the explosion of the Chelyabinsk (Chebarkulsky) meteoroid in February 15, 2013. M.: FGBU "IPG" Publ. (in Russian).

2. Asteroid-Comet Hazards: Yesterday, Today, and Tomorrow. (2010). — Shustov B. M., Ryhlova L. V. (Eds). — M.: Fizmatlit Publ., 384 p. (in Russian).

3. Solar System Research. (2013) 47 (4). (Thematical issue).

4. Bronshten V. A. (1983) Physics of Meteor Phenomena. Springer. 416 p.
https://doi.org/10.1007/978-94-009-7222-3

5. Bronsten V. A. (1993) The entry of the large meteoroids into the atmosphere. Astronomicheskij vestnik. 27 (1). P. 102—121 (in Russian).

6. Bronsten V. A. (1993) About physical mechanism of the large meteor bodies quasicontinuous fragmentation. Astronomicheskij vestnik. 27 (3). P. 65—74 (in Russian).

7. Bronsten V. A. (1994) The theory Grigoryan using to the case of the giant meteoroids fragmentation. Astronomicheskij vestnik. 28 (2). P. 118—124 (in Russian).

8. Bronsten V. A. (1995) Large meteor bodies fragmentation and destruction into the atmosphere. Astronomicheskij vestnik. 29 (5). P. 450—459 (in Russian).

9. Gossard E. E., Hooke Y. X. (1975) Waves in the Atmosphere: Atmospheric Infrasound and Gravity Waves, Their Generation and Propagation (Developments in Atmospheric Science). Elsevier Scientific Pub. Co., 472 p.

10. Grigoryan S. S. (1980) Motion and Destruction of Meteorites in Planetary Atmospheres. Cosmic Research. 17 (6). P. 724—740.

11. Gritsevich M. I., Stulov V. P., Turchak L. I. (2009) Classification of the Consequences for Collisions of Cosmic Bodies with the Earth. Doklady Physics. 54 (11). P. 499—503.
https://doi.org/10.1134/S1028335809110068

12. Dinamicheskije processy v geospherah. Vypusk 5. Geophysical effects of the Chelyabinsk meteoroid fall: Proceedings IDG RAN. Thematical issue. (2014). M.: GEOS. 160 p. (in Russian).

13. Emelyanenko V. V., Popova O. P., Chugaj N. N., Sheljakov M. A., Pahomov Ju. V., Shustov B. M., Shuvalov V. V., Birjukov E. E., Rybnov Ju. S., Marov M. Ja., Ryhlova L. V., Naroenkov S. A., Kartashova A. P., Harlamov V. A., Trubeckaja I. A. (2013) Аstronomical and physical aspects of the Chelyabinsk event. (February 15, 2013). Solar System Research. 47 (4), 240—254 (2013).
https://doi.org/10.1134/S0038094613040114

14. Adushkin V. V., Nemchinov I. V. (eds). (2005) Catastrophic Impacts of Cosmic Bodies. M.: ECC Akademkniga Publ. 310 p. (in Russian).

15. Kruchinenko V. G. (2012) Mathematical and physical analysis of the meteor phenomenon, 294 p. Kyiv. (in Ukrainian).

16. The Chelyabinsk Meteorite — one year on the Earth: Proceedings of All-Russian Scientific Conference. (2014). (Eds Antipin N. A., Dudorov A. E., Zamozdra S. N., Kolisnichenko S. V., Kocherov A. V., Shajgorodskij E. A.). — Chelyabinsk: Kamennyi poyas Publ., 694 p. (in Russian).

17. Stulov V. P., Mirskii V. N., Vislyi A. I. (1995) Aerodynamics of Bolides. M.: Nauka Publ., 240 p. (in Russian).

18. Chelyabinsk superbolide. (2016). — Gor’kavyi N. N., Dudorov A. E. (Eds). 223 p. Chelyabinsk: Chelyabinskiy Gosud. Univ. (in Russian).

19. Chernogor L. F. (2014) Main effects of Chelyabinsk meteorite falling: physics and mathematics calculation results. Meteorit Cheljabinsk — god na Zemle: materialy Vserossijskoj nauchnoj konferencii. (Eds N. A. Antipin et al.) 229—264. Chelyabinsk, (in Russian).

20. Chernogor L. F. (2013) Plasma, electromagnetic and acoustic effects of meteorite «Chelyabinsk». Engineering Physics. 8. P. 23—40 (in Russian).

21. Chernogor L. F. (2012) Physics and Ecology of Disasters. Kharkiv: V. N. Karazin Kharkiv National Univ. Publ., 556 p. (in Russian).

22. Chernogor L. F. (2013) Physical effects of the Chelyabinsk meteorite passage. Dopovіdі Natsіonalnoi akademіi nauk Ukrainy. 10. P. 497—104 (in Russian).

23. Chernogor L. F. (2018) The physical effects of Romanian meteoroid. 1. Space Science and Technology. 24 (1), P. 449—70 (in Russian).
https://doi.org/10.15407/knit2018.01.049

24. Chernogor L. F. (2018) The physical effects of Romanian meteoroid. 2. Space Science and Technology. 24 (2), P. 418—35 (in Russian).
https://doi.org/10.15407/knit2018.02.018

25. Shuvalov V. V., Artem’jeva N. A., Popova A. P. (2014) The shock wave parameters estimation caused the Chelyabinsk meteoroid fall. Dinamicheskije processy v geospherah. Vypusk 5. Geophysicheskije effekty padenija Chelyabinskogo meteoroida: sbornik nauchnyh trudov IDG RAN. Special’nyj vypusk. M.: GEOS. P. 48—59. (in Russian).

26. Brown P., Spalding R. E., ReVelle D. O., Tagliaferri E. (2002) The flux of small near-Earth objects colliding with the Earth. Nature. 420. P. 294—296.
https://doi.org/10.1038/nature01238

27. Catastrophic events caused by cosmic objects (2008). — Adushkin V., Nemchinov I. (Eds). — Netherlands: Springer. XI + 357 p. doi: 10.1007/978-1-4020-6452-4.
https://doi.org/10.1007/978-1-4020-6452-4

28. Center for Near Earth object studies. (2019). URL: https://cneos.jpl.nasa.gov/ (Last access: 01.03.2019)

29. Chernogor L. F., Rozumenko V. T. (2013) The physical effects associated with Chelyabinsk meteorite’s passage. Probl. Atomic Sci. and Technol. 86. № 4. P. 136 — 139.

30. Hazards due to comets and asteroids. (1994). — Gehrels T. (Ed.). — Tucson; London: Univ. Arizona Press. 1994. 1300 p.

31. Glasstone S., Dolan P. J. (1977) Effects of nuclear weapons. Washington, DC (USA): Department of Defense, Department of Energy. 653 p.
https://doi.org/10.2172/6852629

32. Grigoryan S. S. (2013) Physical mechanism of Chelyabinsk superbolide explosion. Solar Syst. Res. 47, № 4. P. 268—274.
https://doi.org/10.1134/S0038094613040151

33. Hills J. G., Goda M. P. (1993) The fragmentation of small asteroids in the atmosphere. Astron. J. 105. № 3. P. 1114—1144.
https://doi.org/10.1086/116499

34. Infrasound monitoring for atmospheric studies. — Le Pichon A., Blanc E., Hauchecorne A. (Eds) — Dordrecht, Heidelberg, London, New York: Springer. 2010. 734 p.

35. Popova O. P., Jenniskens P., Emelyanenko V., et al. (2013) Chelyabinsk airburst, damage assessment, meteorite recovery, and characterization. Science. 342. P. 1069— 1073.
https://doi.org/10.1126/science.1242642

36. Popova O. P., Jenniskens P., Emelyanenko V., et al. (2013) Supplementary material for Chelyabinsk airburst, damage assessment, meteorite, and characterization. Science. 145 p.