The physical effects of Lipetsk meteoroid. 2

1Chernogor, LF
1V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2019, 35(5):25-47
https://doi.org/10.15407/kfnt2019.05.025
Start Page: Dynamics and Physics of Solar System Bodies
Language: Russian
Abstract: 

Comprehensive modeling studies of the processes induced in all geospheres by the passage and explosion of the meteoroid near the Lipetsk City (Russia) on June 21, 2018 are described. Thermodynamic and plasma effects, as well as the effects of the plume and turbulence, accompanying the passage of the Lipetsk meteoroid are estimated. It is shown that the passage of the celestial body led to the formation of a gas-dust plume. The heated trail of the meteoroid cooled for several hours. Four stages of meteoroid trail cooling are considered in detail. The first of these persisted for ~0.01 s, and the temperature of the trail decreased by a factor of two due to emissions. During the second stage of order of 1 s in duration, cooling due to the trail emissions and expansion took place, and the temperature of the trail decreased by 15 %. In the course of the third stage of order of 3 s in duration, the products of the explosion and the heated gas, thermic, experienced an 100...200 m/s2 acceleration and attained an 200 m/s speed of uplifting, and the temperature decreased on 10 percents. The fourth stage persisted for 100 s, during which the thermic absorbed the cool air at an intensive rate and gradually cooled off and decelerated. The maximum altitude of the uplifting of the thermic reached 15...20 km. Contained in the thermic, the products of the explosion, specks of dust and aerosols, further took part in the following three processes: a slow precipitation to the surface of the Earth, turbulent mixing with the ambient air, and the transport by the predominant winds around the globe. The effect of turbulence in the trail has been shown to be well-pronounced, while the effect of magnetic turbulence has been shown to be weakly displayed. The following basic parameters of the plasma in the trail have been estimated: the height dependences of the electron densities per unit length and per unit volume, their relaxation times, the particle collision frequencies, the plasma conductivities, and the electron temperature relaxation time. At the initial moment, the linear and volume electron densities in the trail have been shown to be equal to about (2...40)·1023 m–1 and (1...4)·1021 m–3<.sup>, respectively, and the plasma conductivity to be equal to ~ 1000 Om–1m–1. The role of the dusty plasma component is discussed.

Keywords: complex simulation, Lipetsk meteoroid, plasma, plu¬me, thermodynamic effects, turbulence effects
References: 

1. Artem’jeva N. A., Shuvalov V. V. (2014) Atmosfernyj shlejf Chelyabinskogo meteoroida. Dinamicheskie processy v geosferah. Vypusk 5. Geofizicheskie effekty padeniya Chelyabinskogo meteoroida: sbornik nauchnyh trudov IDG RAN. Specialnyj vypusk. Moskva: GEOS. 2014. P. 134—146 (in Russian).

2. Bronshten V. A. (1983) Physics of Meteor Phenomena. Springer. 416 p. (in Russian).
https://doi.org/10.1007/978-94-009-7222-3

3. Bronshten V. A. (1983) Magnitogidrodinamicheskiy mekhanizm generatsii radioizlucheniya yarkikh bolidov. Astronomicheskiy vestnik. 17(2). S. 94—98 (in Russian).

4. Bronsten V. A. (1993) The entry of the large meteoroids into the atmosphere. Astronomicheskij vestnik. 27 (1). P. 102—121 (in Russian).

5. Bronsten V. A. (1993) About physical mechanism of the large meteor bodies quasicontinuous fragmentation. Astronomicheskij vestnik. 27 (3). P. 65—74 (in Russian).

6. Bronsten V. A. (1994) The theory Grigoryan using to the case of the giant meteoroids frag¬mentation. Astronomicheskij vestnik. 28(2). P. 118—124 (in Russian).

7. Bronsten V. A. (1995) Large meteor bodies fragmentation and destruction into the atmosphere. Astronomicheskij vestnik. 29(5). P. 450—459 (in Russian).

8. Bryunelli B. E., Namgaladze A. A. (1988) Fizika ionosfery. Moskva: Nauka.—527 p. (in Russian).

9. Ginzburg V. L. (1967) Rasprostraneniye elektromagnitnykh voln v plazme. Moskva: Nauka. 684 p. (in Russian).

10. Gor’kavyy N. N., Likharev D. S., Minnibayev D. N. (2014) Tsvetovyye variatsii aerozol’nogo sleda Chelyabinskogo bolida. The Chelyabinsk Meteorite — one year on the Earth: Proceedings of All-Russian Scientific Conference. (Eds Antipin N. A., Dudorov A. E., Zamozdra S. N., Kolisnichenko S. V., Kocherov A. V., Shajgorodskij E. A.). — Chelyabinsk: Kamennyi poyas Publ. P. 118—123 (in Russian).

11. Gor’kavyy N. N., Taydakova T. A. (2014) Vzaimodeystviye Chelyabinskogo bolida s atmosferoy. The Chelyabinsk Meteorite — one year on the Earth: Proceedings of All-Russian Scientific Conference. (Eds Antipin N. A., Dudorov A. E., Zamozdra S. N., Kolisnichenko S. V., Kocherov A. V., Shajgorodskij E. A.). — Chelyabinsk: Kamennyi poyas Publ. P. 124—129 (in Russian).

12. Gor’kavyy N. N., Taydakova T. A., Provornikova Ye. A., et al. (2014) Aerozol’nyy shleyf Chelyabinskogo bolida. The Chelyabinsk Meteorite — one year on the Earth: Proceedings of All-Russian Scientific Conference. (Eds Antipin N. A., Dudorov A. E., Zamozdra S. N., Kolisnichenko S. V., Kocherov A. V., Shajgorodskij E. A.). — Chelyabinsk: Kamennyi poyas Publ. P. 130—135 (in Russian).

13. Grigoryan S. S. (1980) Motion and Destruction of Meteorites in Planetary Atmospheres. Cosmic Research. 17 (6). P. 724—740.

14. Dinamicheskije processy v geospherah. Vypusk 5. Geophysical effects of the Chelyabinsk meteoroid fall: Proceedings IDG RAN. Thematical issue. (2014). M.: GEOS. 160 p. (in Russian).

15. Emelyanenko V. V., Popova O. P., Chugaj N. N., Sheljakov M. A., Pahomov Ju. V., Shustov B. M., Shuvalov V. V., Birjukov E. E., Rybnov Ju. S., Marov M. Ja., Ryhlova L. V., Naroenkov S. A., Kartashova A. P., Harlamov V. A., Trubeckaja I. A. (2013) Аstronomical and physical aspects of the Chelyabinsk event. (February 15, 2013). Solar System Research. 47(4), 240—254.
https://doi.org/10.1134/S0038094613040114

16. Catastrophic Impacts of Cosmic Bodies.(2005) (Eds Adushkin V. V., Nemchinov I. V.). — M.: ECC Akademkniga Publ. 310 p. (in Russian).

17. The Chelyabinsk Meteorite — one year on the Earth: Proceedings of All-Russian Scientific Conference. (2014). (Eds Antipin N. A., Dudorov A. E., Zamozdra S. N., Kolisnichenko S. V., Kocherov A. V., Shajgorodskij E. A.). — Chelyabinsk: Kamennyi poyas Publ., 694 p. (in Russian).

18. Stulov V. P., Mirskii V. N., Vislyi A. I. (1995) Aerodynamics of Bolides. M.: Nauka Publ., 240 p. (in Russian).

19. Chelyabinsk superbolide. (2016). — Gor’kavyi N. N., Dudorov A. E. (Eds). 223 p. Chelyabinsk: Chelyabinskiy Gosud. Univ. (in Russian).

20. Chernogor L. F. (2012) Physics and Ecology of Disasters. Kharkiv: V. N. Karazin Kharkiv National Univ. Publ., 556 p. (in Russian).

21. Chernogor L. F. (2013) Plasma, electromagnetic and acoustic effects of meteorite «Chelyabinsk». Engineering Physics. 8. P. 23—40 (in Russian).

22. Chernogor L. F. (2013) Physical effects of the Chelyabinsk meteorite passage. Dopovіdі Natsіonalnoi akademіi nauk Ukrainy. 10. P. 97—104 (in Russian).

23. Chernogor L. F. (2014) Osnovnyye effekty padeniya meteorita Chelyabinsk: rezul’taty fiziko-matematicheskogo modelirovaniya. The Chelyabinsk Meteorite — one year on the Earth: Proceedings of All-Russian Scientific Conference. (Eds Antipin N. A., Dudorov A. E., Zamozdra S. N., Kolisnichenko S. V., Kocherov A. V., Shajgorodskij E. A.). — Chelyabinsk: Kamennyi poyas Publ. P. 229—264 (in Russian).

24. Chernogor L. F. (2017) Atmosfernyye effekty gazopylevogo sleda Chelyabinskogo meteoroida 2013 goda. Izvestiya RAN. Fizika atmosfery i okeana. 53(3). P. 296—306 (in Russian).

25. Chernogor L. F. (2018) Magnito-ionosfernyye effekty meteoroidnogo plyuma. Geomagnetizm i aeronomiya. 58(1). P. 125—132 (in Russian).

26. Chernogor L. F., Milovanov Yu. B. (2018) Rise of a meteoroid thermal in the Earth’s atmosphere. Kinematics Phys. Celestial Bodies. 34(4). P. 198—206.
https://doi.org/10.3103/S0884591318040025

27. Chernogor L. F. (2018) The physical effects of Romanian meteoroid. 1. Space Science and Technology. 24 (1), P. 49—70 (in Russian).
https://doi.org/10.15407/knit2018.01.049

28. Chernogor L. F. (2018) The physical effects of Romanian meteoroid. 2. Space Science and Technology. 24 (2), P. 18—35 (in Russian).
https://doi.org/10.15407/knit2018.02.018

29. Chernogor L. F. (2019) Physical effects of the Lipetsk meteoroid. 1. Kinematics Phys. Celestial Bodies. 35(4). P. 37—59. (in Russian).
https://doi.org/10.15407/kfnt2019.04.037

30. Catastrophic events caused by cosmic objects (2008). — Adushkin V., Nemchinov I. (Eds). — Netherlands: Springer. XI + 357 p. doi: 10.1007/978-1-4020-6452-4.
https://doi.org/10.1007/978-1-4020-6452-4

31. Chernogor L. F., Rozumenko V. T. (2013) The physical effects associated with Chelya¬binsk meteorite’s passage. Probl. Atomic Sci. and Technol. 86(4). P. 136 — 139.

32. Gorkavyi N. N., Taidakova T. A., Provornikova E. A. (2013) Aerosol plume after the Chelyabinsk bolide. Solar system research. 2013. 47(4). P. 275—279.
https://doi.org/10.1134/S003809461304014X

33. Grigoryan S. S. (2013) Physical mechanism of Chelyabinsk superbolide explosion. Solar Syst. Res. 47(4). P. 268—274.
https://doi.org/10.1134/S0038094613040151

34. Hills J. G., Goda M. P. (1993) The fragmentation of small asteroids in the atmosphere. Astron. J. 105(3). P. 1114—1144.
https://doi.org/10.1086/116499

35. Hunten D. M., Turco R. P., Toon O. B., et al. (1980) Smoke and dust particles of meteoric origin in the mesosphere and stratoshpere. J. Atmos. Sci. 37. P. 1342— 1357.
https://doi.org/10.1175/1520-0469(1980)0372.0.CO;2

36. Popova O. P., Jenniskens P., Emelyanenko V., et al. (2013) Chelyabinsk airburst, damage assessment, meteorite recovery, and characterization. Science. 342. P. 1069— 1073.
https://doi.org/10.1126/science.1242642

37. Popova O. P., Jenniskens P., Emelyanenko V., et al. (2013) Supplementary material for Chelyabinsk airburst, damage assessment, meteorite, and characterization. Science. URL: www.sciencemag.org/cgi/content/full/science.1242642/DC1. Last access 1.10.2015. 145 p.

38. Schunk R. W., Nagy A. (2000) Ionospheres: Physics, Plasma Physics, and Chemistry. Cambridge University Press. 554 p.
https://doi.org/10.1017/CBO9780511551772