Diffuse structure of some meteors at the beginning of their trajectories at classic heights

1Kozak, PM
1Astronomical Observatory of Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2019, 35(6):62-79
https://doi.org/10.15407/kfnt2019.06.062
Start Page: Dynamics and Physics of Bodies of the Solar System
Language: Russian
Abstract: 

The problem of anomalous meteors with diffuse view and increased size of their comas at the beginning of radiation is considered. Results of processing of some such meteors detected with high-sensitive observational TV systems of superisocon type during Leonid 2002 storm observations are given. In opposite to similar cases described in literature earlier the given meteors had the increased is size diffuse structure of meteor coma not at extrahigh altitudes, but below 128 km: 118.06 ± 0.07 km, 123.01 ± 0.02 km, 124.45 ± 0.10 km. At the trajectory beginning their absolute astronomical magnitudes were varying in the range of +6m.. .+5m, and in maximum of brightness they reached -0.5m. The range of their masses was 0.03...0.06 g. The influence of working mode of TV system onto possible appearance of artifacts is considered. While the transparent, diffuse view of limiting low-light meteor image can be a result of low signal-to-noise ratio, the increasing of spatial size of meteor coma cannot be explained by technical artifacts. Separation of some extremely low-light meteor images in start frames onto a range of individual point objects placed inside a zone 0.5...1.5 km can serve as an indirect argument of real fragmentation of an initial particle. The conclusion about possible fragmentation of some meteoroids from Leonid stream during time period of two-three weeks before collision with earth with velocities of fragment separation about millimeters a second is drawn.

Keywords: anomalous meteors, diffuse meteor structure, fragmentation, meteors, TV observations
References: 

1.Kozak P. M., Kozak L. V. (2015) Method for photometry of low light level meteors and earth artificial satellites from observations of superisocon TV systems. Space Science and Technology. 21(1). 38—47. (In Ukrainian).
https://doi.org/10.15407/knit2015.01.038

2.Kozak P., Rozhilo O., Taranukha Ju. (2012) Kinematical parameters of the meteors from the results of the basic television observations during the period of the Autumn Equinox 2001. Bulletin of Taras Shevchenko National University of Kyiv. Astronomy. 49. 20—25. (In Ukrainian).

3.Kozak P., Rozhilo O., Taranukha Ju., Kruchynenko V. G. (2011) Kinematical characteristics of September meteors from double-station TV observations in 2003. Space Science and Technology. 17(4). 53—64. (In Ukrainian).
https://doi.org/10.15407/knit2011.04.053

4.Levin B. Y. (1956) Physical Theory of Meteors and Meteor Matter in the Solar System, USSR Academy of Sciences, Moscow. (In Russian).

5.Abe S., Borovička J., Spurný P., Koten P., Ceplecha Z., Tamagawa T., and Meteor Network Team in Japan. (2006) Earth-grazing fireball on March 29, 2006. European Planet. Sc. Cong. 2006, Berlin, Germany. 486.

6.Betlem H., Jenniskens P., Leven J., Kuile C., Johannink C., Zhao H., Lei C., Li G., Zhu J., Evans S., Spurny P. (1999) Very precise orbits of 1998 Leonid meteors. Meteoritics and Planet. Sci. 34. 979—986.
https://doi.org/10.1111/j.1945-5100.1999.tb01417.x

7.Borovička J., Ceplecha Z. (1992) Earth-grazing fireball of October 13, 1990. Astron. and Astrophys. 257. 323—328.

8.Bronshten V. A. (1983) The Physics of Meteoritic Phenomena. Dordrecht: D. Reidel Publishing Co.
https://doi.org/10.1007/978-94-009-7222-3

9.Campbell M. D., Brown P. G., LeBlanc A. G., Hawkes R., Jones J., Worden S., Correll R. (2000) Image-intensified video result from the 1998 Leonid shower: I. Atmospheric trajectories and physical structure. Meteoritics and Planet. Sci. 35. 1259—1267.
https://doi.org/10.1111/j.1945-5100.2000.tb01514.x

10.Campbell-Brown M. D., Koschny D. (2004) Model of the ablation of faint meteors. Astron. and Astrophys. 418. 751—758.
https://doi.org/10.1051/0004-6361:20041001-1

11.Ceplecha Z. (1994) Earth-graztng daytight fireball of August 10, 1972. Astron. and Astrophys. 283. 287—288.

12.Fujiwara Y., Ueda M., Shiba Y., Sugimoto M., Kinoshita M., Shimods C., Nakamura T. (1998) Meteor luminostty at 160 km altitude from TV observations for bright Leonid meteors. Geophys. Res. Lett. 25(8). 285—288.
https://doi.org/10.1029/97GL03766

13.Gahrken B., Michelberger J. (2003) A bright, high altitude 2002 Leonid. WGN, the journal of the IMO. 31(5). P. 137—138.

14.Hajdukova M., Kruchinenko V. G., Kazantsev A. M., Taranucha Ju. G., Rozhilo A. A., Eryomin S. S., Kozak P. N. (1995.) Perseid meteor stream 1991—1993 from TV observations in Kiev. Earth, Moon and Planets. 68. 297—301.
https://doi.org/10.1007/BF00671520

15.Kinoshita M., Maruyama T., Sagayama T. (1999) Preliminary activity of Leonid meteor storm observed with a video camera in 1997. Geophys. Res. Lett. 26(1). 41—44.
https://doi.org/10.1029/1998GL900241

16.Koten P., Spurny P., Borovicka J., Stork R. (2001) Extreme beginning heights for non-Leonid meteors. In: Proc. Meteoroids 2001 Conf. Ed.: Barbara Warmbein. ESA SP-495, Noordwijk: ESA Publ. Div. 119—122.

17.Kozak P. M. (2002) Analysis of the methods and precision of determination of the equatorial coordinates in digital reducing of TV observations of meteors. Kinematics and Phys. Celestial Bodies. 18(5). 471—480.

18.Kozak P. M. (2003) A vector method for the determination of trajectory parameters and heliocentric orbit elements of a meteor in TV observations. Kinematics Phys. Celes¬tial Bodies. 19(1). 62—76.

19.Kozak P. (2008) "Falling Star": software for processing of double-station TV meteor observations. Earth, Moon, and Planets. 102(1-4). 277—283.
https://doi.org/10.1007/s11038-007-9223-x

20.Kozak P. M. (2014) Semi-empirical method for the photometry of low-light meteors from observations with the isocon television systems. — In: Proc. Meteoroids 2013. Eds.: T. J. Jopek, F. J. M. Rietmeijer, J. Watanabe, I. Wiltiams. A. M. University Press. 335—343.

21.Kozak P., Rozhilo O., Kruchynenko V., Kazantsev A., Taranukha A. (2007) Results of processing of Leonids-2002 meteor storm TV observations in Kyiv. Adv. Space Res. 39(4). 619—623.
https://doi.org/10.1016/j.asr.2005.08.014

22.Kozak P. M., Rozhilo A. A., Taranukha Y. G. (2001) Some features of digital kinematic and photometrical processing of faint TV meteors. In: Proc. Meteoroids 2001 Conf. Ed.: Barbara Warmbein. ESA SP-495, Noordwijk: ESA Publ. Div. 337—342.

23.Kozak P. M., Watanabe J. (2017) Upward-moving low-light meteor — I. Observation results. Mon. Notic. Roy. Astron. Soc. 467(1). 793—801.
https://doi.org/10.1093/mnras/stx008

24.Kozak P., Watanabe J., Sato M. (2014) Anomalous meteors from the observations with super-isocon TV systems. — Abs. Book ACM’2014, Eds: K. Muinonen, A. Penttila, M. Granvik, A. Virkki, G. Fedorets, O. Wilkman, T. Kohout.

25.Kruchinenko V. G., Kazantsev A. M., Taranukha Yu. G., Kozak P. M., Yeryomin S. S., Rozhylo O. O., Smertyuk L. M. (1997) Catalogue of Perseid shower meteors on TV observations in Kyiv during 1991—1993. Bulletin of Taras Shevchenko National University of Kyiv. Astronomy. 34. 94—117.

26.LeBlanc A. G., Murray I. S., Hawkes R. L., Worden P., Campbell M. D., Brown P., Jenniskens P., Correll R. R., Montague T., Babcock D. D. (2000) Evidence for trans-verse spread in Leonid meteors. Mon. Notic. Roy. Astron. Soc. 313. L9—L13.
https://doi.org/10.1046/j.1365-8711.2000.03347.x

27.Madiedo J. M., Espartero F., Castro-Tirado A. J., Pastor S., de los Reyes J. A., Jose A. (2016) Earth-grazing fireball from the Daytime ζ-Perseid shower observed over Spain on 2012 June 10. Mon. Notic. Roy. Astron. Soc. 460(1). 917—922.
https://doi.org/10.1093/mnras/stw1020

28.Murray I. S., Hawkes R. L., Jenniskens P. (1999) Airborne intensified charge-coupled device observations of the 1998 Leonid shower. Meteoritics and Planet. Sci. 34. 949—958.
https://doi.org/10.1111/j.1945-5100.1999.tb01413.x

29.Olech A., Zoladek P., Wisniewski M., Fietkiewicz K., Maciejewski M., Tyminski Z., Krzyzanowski T., Krasnowski M., Kwinta M., Myszkiewicz M., Polakowski K., Zareba P. (2013) PF191012 Myszyniec — highest Orionid meteor ever recorded. Astron. and Astrophys. 557(A89). 1—5.
https://doi.org/10.1051/0004-6361/201321729

30.Popova O. P., Strelkov A. S., Sidneva S. N. (2007) Sputtering of fast meteoroids’ surface. Adv. Space Res. 39(4). 567—573.
https://doi.org/10.1016/j.asr.2006.05.008

31.Roberts I. D., Hawkes R. L., Weryk R. J., Campbell-Brown M. D., Brown P. G., Stokan E., Subasinghe D. (2014) Meteoroid structure and ablation implications from multiple maxima meteor light curves. — The Meteoroids 2013. Eds: T.J. Jopek, F. J. M. Rietmeijer, J. Watanabe, I. P. Williams. A. M. Univ. Press. 155—162.

32.Spumy P., Betlem H., Jobse K., Koten P., Leven J. V. (2000) New type of radiation of bright Leonid meteors above 130 km. Meteoritics and Planet. Sci. 35. 1109—1115.
https://doi.org/10.1111/j.1945-5100.2000.tb01497.x

33.Spurny P., Betlem H., Leven J. V., Jenniskens P. (2000) Atmospheric behavior and extreme beginning heights of the thirteen brightest photographic Leonid meteors from the ground based expedition to China. Meteoritics and Planet. Sci. 35. 243—249.
https://doi.org/10.1111/j.1945-5100.2000.tb01773.x

34.Spurny P., Shrbeny L., Borovicka J., Koten P., Vojacek V., Stork R. (2014) Bright Perseid fireball with exceptional beginning height of 170 km. Astron. and Astrophys. 563(A64). 1—6.
https://doi.org/10.1051/0004-6361/201323261

35.Taylor M. J., Gardner R. C., Murray I. S., Jenniskens P. (2000) Jet-like structures and wake in Mg I (518 nm) images of 1999 Leonid storm meteors. Earth, Moon, and Planets. 82-83. 379—389.
https://doi.org/10.1007/978-94-017-2071-7_28

36.Vinkovic D. (2007) Thermalization of sputtered particles as the source of diffuse radiation from high altitude meteors. Adv. Space Res. 39(4). 574—582.
https://doi.org/10.1016/j.asr.2005.08.035

37.Watanabe J., Tabe I., Hasegawa H., Hashimoto T., Fuse T., Yoshikawa M., Abe S., Suzuki B. (2003) Meteoroid clusters in Leonids: evidence of fragmentation in space. Publ. Astron. Soc. Jap. 55(3). L23—L26.
https://doi.org/10.1093/pasj/55.3.L23