Solar faculae: microturbulence as an indicator of inclined magnetic fields
1Stodilka, MI, 2Kostyk, RI 1Astronomical Observatory of Ivan Franko National University of Lviv, Lviv, Ukraine 2Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine |
Kinemat. fiz. nebesnyh tel (Online) 2020, 36(4):3-18 |
https://doi.org/10.15407/kfnt2020.04.003 |
Start Page: Solar Physics |
Language: Ukrainian |
Abstract: According to the observations of the solar facula in the Ba II λ 455.403 nm line, a 3D model of the facula area was obtained by solving the inverse nonequilibrium radiative transfer problem. The fine structure of the field of unresolved velocities (microturbulence) was studied. In the layers of the upper photosphere, new turbulent structures are formed, they are localized mainly between ascending and descending flows with the formation of ring-shaped structures of increased turbulence around these flows. We proposed a mechanism of the magnetic anisotropy of microturbulent velocity (small-scale eddy-like plasma movements occur predominantly in planes perpendicular to the magnetic field), which makes it possible to explain the height dependence of the field of unresolved velocities. Anisotropy of microturbulence starts to appear in the lower photospheric layers outside ascending and descending flows, while inside these flows it takes place in higher layers. An increase of microturbulence in the layers of the upper photosphere and lower chromosphere in the areas between the plasma flows indicates the presence of oblique magnetic fields, which, along with the blurring of its spatial structure, indicates the existence of a magnetic canopy region. Microturbulence can be used as an additional tool for the diagnosis of oblique magnetic fields |
Keywords: diagnostics, faculae, microturbulence, oblique magnetic fields, photosphere, Sun |
1. E. A. Gurtovenko and R. I. Kostyk, Fraunhofer Spectrum and a System of Solar Oscillator Strengths (Naukova Dumka, Kiev, 1989) [in Russian].
2. M. I. Stodilka. The Tychonoff stabilizers in inverse problems of spectral studies, Kinematics Phys. Celestial Bodies 19, 229–235 (2003).
3. M. I. Stodilka, A. I. Prysiazhnyi, and R. I. Kostyk. Features of convection in the atmosphere layers of the solar facula, Kinematics Phys. Celestial Bodies 35, 261–270 (2019).
https://doi.org/10.3103/S0884591319060059
4. M. Asplund, H. G. Ludwig, A. Nordlund, and R. F. Stein. The effects of numerical resolution on hydrodynamical surface convection simulations and spectral line formation, Astron. Astrophys. 359, 669–681 (2000).
5. H. W. Babcock and H. D. Babcock. The Sun’s magnetic field, 1952–1954, Astrophys. J. 121, 349–366 (1955).
https://doi.org/10.1086/145994
6. J. H. M. J. Bruls and S. K. Solanki. Infrared lines as probes of solar magnetic features. IX. Mg I 12 μm diagnostics of solar plage, Astron. Astrophys. 293, 240–251 (1995).
7. D. Buehler, A. Lagg, S. K. Solanki, and M. van Noort. Properties of solar plage from a spatially coupled in version of Hinode SP data, Astron. Astrophys. 576, A27 (2015).
https://doi.org/10.1051/0004-6361/201424970
8. C. Cowley, The Theory of Stellar Spectra (Gordon and Breach, New York, 1970).
9. A. Cristaldi and I. Ermolli. 1D atmosphere models from in version of Fe I 630 nm observations with an application to solar irradiance studies, Astrophys. J. 841, 115 (2017).
https://doi.org/10.3847/1538-4357/aa713c
10. I. N. Kitiashvili, A. G. Kosovichev, S. K. Lele, N. N. Mansour, and A. A. Wray. Ubiquitous solar eruptions driven by magnetized vortex tubes, Astrophys. J. 770, 37 (2013).
https://doi.org/10.1088/0004-637X/770/1/37
11. I. N. Kitiashvili, A. G. Kosovichev, N. N. Mansour, and A. A. Wray. Mechanism of local dynamo action on the Sun (2013). arXiv 1312.0982.2013.
12. P. Kobel, S. K. Solanki, and J. M. Borrero. The continuum intensity as a function of magnetic field. I. Active region and quiet Sun magnetic elements, Astron. Astrophys. 531, A112 (2011).
https://doi.org/10.1051/0004-6361/201016255
13. R. Kostik and E. Khomenko. Properties of convective motions in facular regions, Astron. Astrophys. 545, A22 (2012).
https://doi.org/10.1051/0004-6361/201219534
14. R. Kostik and E. Khomenko. Properties of oscillatory motions in a facular region, Astron. Astrophys. 559, A107 (2013).
https://doi.org/10.1051/0004-6361/201322363
15. R. Kostik and E. Khomenko. The possible origin of facular brightness in the solar atmosphere, Astron. Astrophys. 589, A6 (2016).
https://doi.org/10.1051/0004-6361/201527419
16. R. Kostyk. What are solar faculae?, Kinematics Phys. Celestial Bodies 29, 32–36 (2013).
https://doi.org/10.3103/S0884591313010030
17. B. W. Lites. The solar neutral Iron spectrum. II: Profile synthesis of representative Fe I Fraunhofer lines, Sol. Phys. 32, 283–306 (1973).
https://doi.org/10.1007/BF00154942
18. M. J. Martínez González, L. R. Bellot Rubio, S. K. Solanki, et al. Resolving the internal magnetic structure of the solar network, Astrophys. J., Lett. 758, L40 (2012).
https://doi.org/10.1088/0004-637X/758/1/40
19. V. Martínez Pillet, J. C. del Toro Iniesta, A. Álvarez-Herrero, et al. The Imaging Magnetograph eXperiment (IMaX) for the Sunrise balloon-borne solar observatory, Sol. Phys. 268, 57–102 (2011).
20. V. Martinez Pillet, B. W. Lites, and A. Skumanich. Active region magnetic fields. I. Plage fields, Astrophys. J. 474, 810–842 (1997).
https://doi.org/10.1086/303478
21. A. Nesis, R. Hammer, and H. Schleicher. On the turbulence of the solar photosphere, Bull. Am. Astron. Soc. 28, 820 (1996).
22. V. L. Olshevskiy, N. G. Shchukina, and I. E. Vasil’eva. NLTE formation of the resonance Ba II line λ 455.4 nm in the solar atmosphere, Kinematics Phys. Celestial Bodies 24, 145–158 (2008).
https://doi.org/10.3103/S0884591308030033
23. A. Pietarila, R. Cameron, and S. K. Solanki. Expansion of magnetic flux concentrations: A comparison of Hinode SOT data and models, Astron. Astrophys. 518, A50 (2010).
https://doi.org/10.1051/0004-6361/200913887
24. G. B. Scharmer, K. Bjelksjo, T. K. Korhonen, B. Lindberg, and B. Petterson. The 1-meter Swedish solar telescope, in Innovative Telescopes and Instrumentation for Solar Astrophysics, Waikoloa, HI, Aug. 24–28,2002, Ed. by S. L. Keil and S. V. Avakian (SPIE, Bellingham, WA, 2003), in Ser.: Proceedings of SPIE, Vol. 4853, pp. 341–350.
https://doi.org/10.1117/12.460377
25. N. G. Shchukina, V. L. Olshevsky, and E. V. Khomenko. The solar Ba II 4554 Å line as a Doppler diagnostic: NLTE analysis in 3D hydrodynamical model, Astron. Astrophys. 506, 1393–1404 (2009).
https://doi.org/10.1051/0004-6361/200912048
26. N. Shchukina, J. Trujillo Bueno. Determining the magnetization of the quiet Sun photosphere from the Hanle effect and surface dynamo simulations, Astrophys. J., Lett. 731, L21 (2011).
https://doi.org/10.1088/0004-637X/731/1/21
27. H. Socas-Navarro. A high-resolution three-dimensional model of the solar photosphere derived from Hinode observations, Astron. Astrophys. 529, A37 (2011).
https://doi.org/10.1051/0004-6361/201015805
28. S. K. Solanki. Velocities in solar magnetic fluxtubes, Astron. Astrophys. 168, 311–329 (1986).
29. S. K. Solanki. Small scale solar magnetic fields — An overview, Space Sci. Rev. 63, 1–188 (1993).
https://doi.org/10.1007/BF00749277
30. S. K. Solanki, P. Barthol, S. Danilovic, et al. SUNRISE: Instrument, mission, data, and first results, Astrophys. J., Lett. 723, L127–L133 (2010).
https://doi.org/10.1088/2041-8205/723/2/L127
31. O. Steiner, U. Grossmann-Doerth, M. Schüssler, and M. Knölker. Polarized radiation diagnostics of magnetohydrodynamic models of the solar atmosphere, Sol. Phys. 164 (1–2), 223–242 (1996).
https://doi.org/10.1007/BF00146636
32. J. O. Stenflo. Magnetic-field structure of the photospheric network, Sol. Phys. 32, 41–63 (1973).
https://doi.org/10.1007/BF00152728
33. M. I. Stodilka and A. I. Prysiazhnyi. Diagnostics of the solar atmosphere by the Non-LTE inversion method: Line of Ba II λ 455.403 nm, Kinematics Phys. Celestial Bodies 32, 23–29 (2016).
https://doi.org/10.3103/S0884591316010074
34. R. J. Rutten. Extreme limb observations of Ba II λ 4554 and Mg I λ 4571, Sol. Phys. 51, 3–24 (1977).
https://doi.org/10.1007/BF00240441
35. R. J. Rutten. Empirical NLTE analyses of solar spectral lines. II — The formation of the Ba II λ 4554 resonance line, Sol. Phys. 56, 237–262 (1978).
https://doi.org/10.1007/BF00152470
36. R. J. Rutten and R. W. Milkey. Partial redistribution in the solar photospheric Ba II spectrum, Astrophys. J. 231, 277–283 (1979).
https://doi.org/10.1086/157190
37. A. Voegler, S. Shelyag, M. Schussler, et al. Simulations of magneto-convection in the solar photosphere. Equations, methods, and results of the MURaM code, Astron. Astrophys. 429, 335–351 (2005).
https://doi.org/10.1051/0004-6361:20041507