Influence of vertical heterogeneity of the atmosphere temperature on the propagation of acoustic-gravity waves

1Fedorenko, AK, Kryuchkov, EI, 1Cheremnykh, OK, Rapoport, YG
1Space Research Institute under NAS and National Space Agency of Ukraine, Kyiv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2020, 36(6):3-21
https://doi.org/10.15407/kfnt2020.06.003
Start Page: Dynamics and Physics of Bodies of the Solar System
Language: Ukrainian
Abstract: 

A new approach to the study of acoustic-gravity waves (AGW) in the Earth’s atmosphere in the presence of a vertical temperature inhomogeneity is proposed. Using this approach, the local AGW dispersion equation is obtained for an atmosphere with a small vertical temperature gradient. The modification of acoustic and gravitational regions of freely propagating AGWs on the spectral plane is studied depending on the temperature gradient. It is shown that, the acoustic and gravitational regions approach each other with a positive temperature gradient and the distance between them increases with a negative gradient. On the spectral plane, the dispersion curves of non-divergent and anelastic horizontal wave modes are the indicators of location of the acoustic and the gravitational regions of freely propagating AGWs. The possibility of overlapping the acoustic and the gravitational regions of AGWs in non-isothermal atmosphere is investigated.

Keywords: acoustic-gravity wave, atmosphere, vertical temperature inhomogeneity
References: 

1. Ladikov-Royev Yu. P., Cheremnykh O. K., Fedorenko A. K., Nabivach V. Ye. (2015) Acoustic-gravitational waves in a vortex polar thermosphere. Probl. Control and Inform. 5. 74—84. (In Russian).

 2. Somsikov V. M. (1983) Solar terminator and atmosphere dynamics. Alma-Ata: Nauka.

 3. Fedorenko A. K., Kryuchkov E. I. (2011) Distribution of medium-scale acoustic gravity waves in polar regions according to satellite measurement data. Geomagnetism and Aeronomy. 51(1). 527—539. (In Russian).

 4. Cheremnykh O. K., Selivanov Yu. A., Zakharov I. V. (2010) The influence of compressibility and nonisothermality of the atmosphere on the propagation of acousto-gravity waves. Kosm. nauka tehnol. 16(1). 9—19. (In Russian).

 5. Beer T. (1974) Atmospheric Waves. John Wiley, New York.

 6. Bespalova A. V., Fedorenko A. K., Cheremnykh O. K., Zhuk I. T. (2016) Satellite observations of wave disturbances caused by moving solar terminator. J. Atmos. Solar.-Terr. Phys. 140. 79—85. doi:10.1016 j.jastp.2016.02.012.

 7. Campbell W. R., Roberts B. (1989) The influence of a chromospheric magnetic field on the solar p- and f-modes. Astrophys. J. 338. 538—556.

 8. Cheremnykh O. K., Fedorenko A. K., Kryuchkov E. I., Selivanov Y. A. (2019) Evanescent acoustic-gravity modes in the isothermal atmosphere: systematization, applications to the Earth’s and Solar atmospheres. Ann. Geophys. 37(3).  405—415.

 9. Einaudi F., Hines C. O. (1970) WKB approximation in application to acoustic-gravity waves. Can. J. Phys. 48(12). 1458—1471. doi.org 10.1139 p70-185.

10. Forbes J. M., Moudden Y. (2009) Solar terminator wave in a Mars general circulation model. Geophys. Res. Lett. 36. 17201.
https://doi.org/10.1029/2009GL039528

11. Francis S. H. (1975) Global propagation of atmospheric gravity waves: A review. J. Atmos. and Terr. Phys. 37. 1011—1054.
https://doi.org/10.1016/0021-9169(75)90012-4

12. Galushko V. G., Paznukhov V. V., Yampolski Y. M., F`ster J. C. (1998) Incoherent scatter radar observations of AGW TID events generated by the moving solar terminator. Ann. Geophys. 16. 821—827.
https://doi.org/10.1007/s00585-998-0821-3

13. Hajkovicz L. A. (1991) Auroral electrojet effect on the global occurrence pattern of large scale travelling ionospheric disturbances. Planet and Space Sci. 39. 1189— 1196.
https://doi.org/10.1016/0032-0633(91)90170-F

14. Hines C. O. (1960) Internal gravity waves at ionospheric heights. Can. J. Phys. 38. 1441—1481.
https://doi.org/10.1139/p60-150

15. Hocke K., Schlegel K. (1996) A review of atmospheric gravity waves and traveling ionospheric disturbances: 1982-1995. Ann. Geophys. 14. 917—940.
https://doi.org/10.1007/s00585-996-0917-6

16. Huang K. M., Zhang S. D., Yi F., Huang C. M., Gan Q., Gong Y., Zhang Y. H. (2014) Nonlinear interaction of gravity waves in a nonisothermal and dissipative atmosphere. Ann. Geophys. 32. 263—275, doi:10. 5194 angeo-32-263-2014.
https://doi.org/10.5194/angeo-32-263-2014

17. Kaladze T. D., Pokhotelov O. A., Shah H. A., Khan M. I., Stenflo L. (2008) Acoustic-gravity waves in the Earth’s ionosphere. J. Atmos. Sol.-Terr. Phys. 70. 1607—1616.
https://doi.org/10.1016/j.jastp.2008.06.009

18. Miles Alan J., Roberts B. (1992) Magnetoacoustic-gravity surface waves. I. Constant Alfven Speed. Solar Phys. 141. 205—234.
https://doi.org/10.1007/BF00155176

19. Nekrasov A. K., Shalimov S. L., Shukla P. K., Stenflo L. (1995) Nonlinear disturbances in the ionosphere due to acoustic gravity waves. J. Atmos. and Terr. Phys. 57. 732—742.

20. Rapoport Yu. G., Gotynyan O. E., Ivchenko V. M., Kozak L. V., Parrot M. (2004) Effect of acoustic-gravity wave of the lithospheric origin on the ionospheric F region before earthquakes. Phys. and Chem. Earth. 29. 607—616.
https://doi.org/10.1016/j.pce.2003.10.006

21. Rosental C. S., Gough D. O. (1994) The Solar f-mode as interfacial mode at the chromosphere-corona transition. Astrophys. J. 423. 488—495.
https://doi.org/10.1086/173826

22. Sauli P., Boska J. (2001) Tropospheric events and possible related gravity wave activity effects on the ionosphere. J. Atmos. Solar.-Terr. Phys. 63. 945—950.
https://doi.org/10.1016/S1364-6826(00)00205-4

23. Schubert G., Walterscheid R. L. (1984) Propagation of Small-Scale Acoustic-Gravity Waves in the Venus Atmosphere. J. Atmos. Sci. 41. № 7. 1202—1213.
https://doi.org/10.1175/1520-0469(1984)0412.0.CO;2

24. Stenflo L., Shukla P. K. (2009) Nonlinear acoustic gravity wave. J. Plasma Phys. 75. 841—847. doi.org 10.1017 S0022377809007892.
https://doi.org/10.1017/S0022377809007892

25. Tolstoy I. (1963) The theory of waves in stratified fluids including the effects of gravity and rotation. Revs Mod. Phys. 35(1).
https://doi.org/10.1103/RevModPhys.35.207

26. Vadas S. L., Fritts M. J. (2005) Thermospheric responses to gravity waves: Influences of increasing viscosity and thermal diffusivity. J. Geophys. Res. 110(D15103). doi:10. 1029 2004JD005574.
https://doi.org/10.1029/2004JD005574

27. Waltercheid R. L., Hecht J. H. (2005) A reexamination of evanescent acoustic-gravity waves: Special properties and aeronomical significance. J. Geophys. Res. 108(D11). 4340, doi: 10. 1029 2002JD002421.
https://doi.org/10.1029/2002JD002421

28. Yeh K. S., Liu C. H. (1974) Acoustic-gravity waves in the upper atmosphere. Rev. Geophys. and Space Phys. 12. 193—216.
https://doi.org/10.1029/RG012i002p00193

29. Yi™it E., Aylward A. D., Medvedev A. S. (2008) Parameterization of the effects of vertically propagating gravity waves for thermosphere general circulation models: Sensitivity study. J. Geophys. Res. 113(D19106). doi:10.1029 2008JD010135.
https://doi.org/10.1029/2008JD010135

30. Zhang S. D., Yi F. (2002) A numerical study of propagation characteristics of gravity wave packets propagating in a dissipative atmosphere. J. Geophys. Res. 107(D14). 1—9. 
https://doi.org/10.1029/2001JD000864