Features of the equinox of Saturn in 2010

1Vidmachenko, AP
1Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2021, 37(1):57-70
https://doi.org/10.15407/kfnt2021.01.057
Start Page: Dynamics and Physics of Bodies of the Solar System
Language: Ukrainian
Abstract: 

The equator of Saturn is inclined to the orbital plane at an angle of 26.75° with a period of revolution around the Sun of 29.45 years. Due to the eccentricity of the e = 0.056 orbit, its southern hemisphere receives 25 % more energy from the Sun than the northern one, since the perihelion of orbit — Saturn passes during the summer epoch in the southern hemisphere, and aphelion — during summer in the northern hemisphere. This affects the physical characteristics and vertical structure of the atmosphere. We registered changes on Saturn and related them to the seasonal influx of solar energy. For the analysis, we used the results of observations at the equinox moments in 1966, 1980, 1995 and 2010. Latitudinal differences in methane absorption across the disk showed significant asymmetries between the northern and southern hemispheres. Moreover, the change in absorption in the opposite hemispheres occurs in different ways. In identical conditions of the previous history of the planet in 1966 and 1995. — absorption in the northern summer hemisphere was greater than in the southern one. The opposite effect was observed in 1980 when absorption was large in the southern summer hemisphere. The last equinox on Saturn was in 2009. We assumed that it would be similar to the results of 1980. However, in contrast to the pronounced asymmetry of absorption in the hemispheres in 1966, 1980 and 1995. — in the equinox of 2009, the difference in absorption between the hemispheres is almost absent. Moreover, in the northern winter hemisphere, absorption did not decrease, but in the summer southern hemisphere it increased markedly. The very same equinox of 2009 differed in that, unlike the previous three equinoxes, there was a minimum of solar activity. Combined observations of Voyager in 1980 and Cassini in 2010 showed that in one Saturnian year — the tropical atmosphere in the tropopause warmed up by 10 K. Taking into account these differences and the fact that in 2010 the solar activity index R = 0, and in 1980 — more than 150, we estimate that the radiative constant of the hydrogen-helium atmosphere of Saturn is about 4.5 Earth years. And warming in the tropopause changed atmospheric stratification and stability, and influenced the large-scale dynamics of the upper troposphere in 2010.

Keywords: atmosphere, equinox, methane absorption, Saturn, seasonal changes
References: 

1. Baines K. H., Drossart P., Momary T. W., et al. (2005) The atmospheres of Saturn and Titan in the near-infrared first results of Cassini/VIMS. Earth, Moon, and Planets. 96(3-4). 119—147.
https://doi.org/10.1007/s11038-005-9058-2

2. Bardet D., Spiga A., Guerlet S., et al. (2021) Global climate modeling of Saturn’s atmosphere. Part IV: Stratospheric equatorial oscillation. Icarus. 354, id. 114042.
https://doi.org/10.1016/j.icarus.2020.114042

3. Bezard B., Gautier D., Conrath B. (1984) A seasonal model of the Saturnian upper troposphere Comparison with Voyager infrared measurements. Icarus. 60, Nov. 274—288.
https://doi.org/10.1016/0019-1035(84)90189-1

4. Cabanes S., Spiga A., Young R. M. B. (2020) Global climate modeling of Saturn’s atmosphere. Part III: Global statistical picture of zonostrophic turbulence in high-resolution 3D-turbulent simulations. Icarus. 345, id. 113705.
https://doi.org/10.1016/j.icarus.2020.113705

5. Cess R. D., Cocran J. (1979) A Saturnian stratospheric seasonal climate model. Icarus. 38. 349—357.
https://doi.org/10.1016/0019-1035(79)90191-X

6. Cochran A. L., Cochran W. D. (1981) Longitudinal variability of methane and ammonia bands on Saturn. Icarus. 48, Dec. 488—495.
https://doi.org/10.1016/0019-1035(81)90059-2

7. Conrath B. J., Pirraglia J. A. (1983) Thermal structure of Saturn from Voyager infrared measurements — Implications for atmospheric dynamics. Icarus. 53, Feb. 286— 292.
https://doi.org/10.1016/0019-1035(83)90148-3

8. Dlugach J. M., Morozhenko A. V., Vid’machenko A. P., Yanovitskij E. G. (1983) Investigations of the optical properties of Saturn’s atmosphere carried out at the Main Astronomical Observatory of the Ukrainian Academy of Sciences. Icarus. 54, May. 319—336.
https://doi.org/10.1016/0019-1035(83)90201-4

9. Edgington S., Atreya S. Wilson., et al. (2019) Photochemistry and Heating in Saturn’s Atmosphere: Ring Shadow and Ring Reflection. EPSC-DPS Joint Meeting 2019, 15—20 September 2019, Geneva, Switzerland, id. EPSC-DPS2019-954.

10. Fletcher L. N., Achterberg R. K., Greathouse Th. K., et al. (2010) Seasonal change on Saturn from Cassini/CIRS observations 2004—2009. Icarus. 208(1). 337—352.
https://doi.org/10.1016/j.icarus.2010.01.022

11. Hueso R., Sбnchez-Lavega A., Rojas J. F. et al. (2020) Saturn atmospheric dynamics one year after Cassini: Long-lived features and time variations in the drift of the Hexagon. Icarus. 336, id. 113429.
https://doi.org/10.1016/j.icarus.2019.113429

12. Karkoshka E., Tomasko M. G. (1992) Saturn’s upper troposphere 1986—1989. Icarus. 97(2). 161—181.
https://doi.org/10.1016/0019-1035(92)90125-Q

13. Karkoschka E., Tomasko M. (2005) Saturn’s vertical and latitudinal cloud structure 1991—2004 from HST imaging in 30 filters. Icarus. 179(1). 195—221.
https://doi.org/10.1016/j.icarus.2005.05.016

14. Klimenko V. M., Morozhenko A. V., Vid’machenko A. P. (1980) Phase effect for the brightness coeffisient of the central disk of Saturn and features of Jupiter’s disk. Icarus. 42(3). 354—357.
https://doi.org/10.1016/0019-1035(80)90101-3

15. Leigh N. F. (2017) Saturn’s seasonal atmosphere. Astron. and Geophys. 58(4). 4.26—4.30.

16. Lіmіng L., Rіchard K. A., Barney J. C., et al. (2013) Strong temporal variation over one saturnian year: From Voyager to Cassini. Sci. Reps. 3. 1—5.
https://doi.org/10.1038/srep02410

17. Marin M. (1968) Photometric photographique de Saturne. J. Observ. 51(3). 179—191.

18. Perez-Hoyos S., Sanchez-Lavega A., French R. G., Rojas J. F. (2005) Saturn’s cloud structure and temporal evolution from ten years of Hubble Space Telescope images (1994—2003). Icarus. 176. 155—174.
https://doi.org/10.1016/j.icarus.2005.01.014

19. Price M. J., Franz O. G. (1980) Saturn: UBV photoelectric pinhole scans of the disk. II. Icarus. 44(4). 657—667.
https://doi.org/10.1016/0019-1035(80)90134-7

20. Sanchez-Lavega A., Lecacheux J., Colas F., Laques P. (1993) Temporal behavior of cloud morphologies and motions in Saturn’s atmosphere. J. Geophys. Res. 98(El0). 18,857—18,872.
https://doi.org/10.1029/93JE01777

21. Sanchez-Lavega A., Quesada J. A. (1988) A survey of Saturn’s northern hemisphere from 1979 to 1987. Planet. Space Sci. 36(12). 1381—1389.
https://doi.org/10.1016/0032-0633(88)90006-2

22. Sinclair J. A., Irwin P. G. J., Fletcher L. N., et al. (2012) Seasonal variations of temperature, acetylene and ethane in Saturn’s atmosphere from 2005 to 2010, as observed by Cassini-CIRS. Icarus. 225(1). 257—271.
https://doi.org/10.1016/j.icarus.2013.03.011

23. Spiga A., Guerlet S., Millour E., et al. (2020) Global climate modeling of Saturn’s atmosphere. Part II: Multi-annual high-resolution dynamical simulations. Icarus. 335, id. 113377.
https://doi.org/10.1016/j.icarus.2019.07.011

24. Steklov A. F., Vidmachenko A. P., Minyailo N. F. (1983) Seasonal variations in the atmosphere of Saturn. Soviet Astron. Lett. 9(2). 135—136.

25. Teifel V. G. (1975) Calculation of the depths of absorption lines and bands on the disk of a planet surrounded by a semi-infinite homogeneous atmosphere. Solar System Res. 9. P. 57.

26. Teifel V. G. (1980) Optical properties and structure of Saturn’s atmosphere. Solar Syst. Res. 14(1). 1—16.

27. Tejfel V. G., Karimov A. M., Kharitonova G. A. (2010) Comparison of the latitudinal variations of the methane absorption. Astron. Tsirkulyar. 1573. 1—2.

28. Teifel V. G., Usol’tseva L. A., Kharitonova G. A. (1973) Optical properties and structure of Saturn’s atmosphere. II. Latitudinal variations of absorption in the 0.62-mu CH4 band and characteristics of the planet in the near ultraviolet. Sov. Astron. 17. 108—111.

29. Tejfel V. G., Vdovichenko V. D., Karimov A. M., et al. (2008) The space-time variations of the molecular absorption bands on Jupiter and Saturn from 1995—2007 observations. 39th Lunar and Planetary Science Conference, March 10—14, 2008, League City, Texas. LPI Contribution No. 1391. 1530.

30. Tejfel V. G., Vdovichenko V. D., Karimov A. M., et al. (2010) Saturn at and between the equinoxes 1995 and 2009. 41st Lunar and Planetary Science Conference, March 1—5, 2010, Woodlands, Texas. LPI Contribution No. 1533. 1250.

31. Tejfel V., Vdovichenko V., Karimov A., et al. (2010) Saturn CCD-spectrophotometry in 2009 and 2010 — a comparison of near- and post-equinox latitudinal distribution of molecular absorption. European Planetary Science Congress 2010, held 20—24 Sept. Rome, Italy. EPSC. 5. 322.

32. Temma T., Chanover N. J., Simon-Miller A. A., et al. (2005) Vertical structure modeling of Saturn’s equatorial region using high spectral resolution imaging. Icarus. 175(2). 464–489.
https://doi.org/10.1016/j.icarus.2004.11.006

33. Tomasko M. G., West R. A., Orton G. S., Teifel V. G. (1984) Clouds and aerosols in Saturn’s atmosphere. Saturn. Tucson, AZ, University of Arizona Press. 150—194.

34. Trafton L. (1977) Saturn: Long-term variation of H2, and CH4, absorptions. Icarus. 31. 369—384.
https://doi.org/10.1016/0019-1035(77)90029-X

35. Trafton L. (1985) Long-term changes in Saturn’s troposphere. Icarus. 63. 374—405.
https://doi.org/10.1016/0019-1035(85)90053-3

36. Vidmachenko A. P. (1985) Reflectivity of Saturn’s South Equatorial Region from 1977 through 1981. Solar System Res. 18(3). 123—128.

37. Vidmachenko A. P. (1985) Activity of processes in the atmosphere of Jupiter. Kinematics Phys. Celestial Bodies. 1(5). 101—102.

38. Vidmachenko A. P. (1985) Possible effect of the rings on the photometric properties of Saturn’s cloud layer. Kinematics Phys. Celest. Bodies. 1, Nov.-Dec. 12—15.

39. Vid’machenko A. P. (1987) Manifestation of seasonal variations in the atmosphere of Saturn. Kinematics Phys. Celestial Bodies. 3(6). 9—12.

40. Vidmachenko A. P. (1991) Giant planets — Theoretical and observational aspects. Astron. Vestnik. 25, May-June. P. 277—292.

41. Vid’machenko A. P. (1997) Temporal changes in methane absorption in Jupiter’s atmosphere. Kinematics Phys. Celestial Bodies. 13(6). 21—25.

42. Vid’machenko A. P. (1999) Variations in Reflective Characteristics of Jupiter’s Atmosphere. Solar System Res. 33(6). 464—469.

43. Vidmachenko A. P. (1999) Seasonal variations in the optical characteristics of Saturn’s atmosphere. Kinematics Phys. Celestial Bodies. 15(5). 320—331.

44. Vidmachenko A. P. (2015) Influence of solar activity on seasonal variations of methane absorption in the atmosphere of Saturn. Kinematics Phys. Celestial Bodies. 31(3). 131—140.
https://doi.org/10.3103/S088459131503006X

45. Vidmachenko A. P. (2015) Seasons on Saturn. 1. Changes in reflecting characteristics of the atmosphere at 1964—2012. Astronomical School’s Report. 11(1). 1—14.
https://doi.org/10.18372/2411-6602.11.1001

46. Vidmachenko A. P. (2015) Seasons on Saturn. II. Influence of solar activity on variation of methane absorption. Astronomical School’s Report. 11(1). 15—23.
https://doi.org/10.18372/2411-6602.11.1015

47. Vidmachenko A. P. (2016) Seasonal changes on Jupiter: 1. Factor of activity of the hemispheres. Kinematics Phys. Celestial Bodies. 32(4). 189—195.
https://doi.org/10.3103/S0884591316040073

48. Vidmachenko A. P. (2016) Seasonal changes on Jupiter: 2. Influence of the planet exposure to the Sun. Kinematics Phys. Celestial Bodies. 32(6). 283—293.
https://doi.org/10.3103/S0884591316060076

49. Vidmachenko A. P., Dlugach Zh. M., Morozhenko A. V. (1984) Nature of the optical nonuniformity in Saturn’s disk. Solar System Res. 17(4). 164—171.

50. Vidmachenko A. P., Morozhenko A. V., Klimenko V. M. (1980) Phase effect for the brightness coefficient of the central disk of Saturn and features of Jupiter’s disk. Icarus. 42(3). 354—357.
https://doi.org/10.1016/0019-1035(80)90101-3

51. Vidmachenko A. P., Steklov A. F., Minyajlo N. F. (1984) Seasonal activity on Jupiter. Soviet Astron. Let. 10(5). 289—290.

52. West R. A., Tomasko M. G., Smith B. A., et al. (1982) Spatially resolved methane band photometry of Saturn. I — Absolute reflectivity and center-to-limb variations in the 6190-, 7250-, and 8900-A bands. Icarus. 51, July. 51—64.
https://doi.org/10.1016/0019-1035(82)90029-X