Ionospheric effects from the June 10, 2021 solar eclipse in the polar region

1Chernogor, LF, Mylovanov, YB
1V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2022, 38(4):29-52
https://doi.org/10.15407/kfnt2022.04.029
Start Page: Dynamics and Physics of Solar System Bodies
Language: Ukrainian
Abstract: 

Solar eclipses (SEs) are determined to reveal a broad array of processes acting in all geospheres. In the ionosphere, a decrease in the electron density, electron, ion, and neutral temperatures take place; the dynamics of the ionospheric plasma significantly changes, wave disturbances are generated, and coupling expands across the entire Earth — atmosphere — ionosphere — magnetosphere system. The effects from SEs have been proved to depend on the magnitude of the solar eclipse, geographic coordinates, season, atmospheric and space weather state, solar cycle magnitude, and other factors. In addition to the recurring or regular effects, effects pertaining to a given SE arise. Therefore, the study of physical processes arising in all geospheres under the action of a SE is an urgent interdisciplinary task. The purpose of this paper is to present observations and analysis of temporal disturbances in total electron content (TEC) in the vertical column over the polar region. The data used in this study include the parameters of signals, received at a network of stations, from navigation satellites passing over the moon’s shadow where M ≈ 0.9 in the latitude range ~ 70…80° N. The annular June 10, 2021 solar eclipse began at 08:12:20 UT and ended at 13:11:19 UT. The moon’s shadow appeared over Canada, than it moved across Greenland, Arctic Ocean, the North Pole, and New Siberian Islands. The moon’s shadow covered the northern part of the Russian Federation. Partial SEs were noted in northern and middle parts of Europe, most of the Russian Federation, Mongolia, and China. Using 11 ground-based stations receiving GPS signals and 8 stations receiving signals from navigation satellites, spatial and temporal variations in TEC have been studied during the maximum magnitude of the eclipse in the polar region (73…72° N latitude), and it has been determined the following. A decrease in the electron density at each station and for every satellite began virtually at once after the SE onset and persisted for about 60 to 100 min. Subsequently, a minimum value of TEC was noted, and further TEC showed an increase to the initial or to the greater value. The TEC average value was observed to be 5.2…10.4 TECU. On average, a decrease in TEC was estimated to be 2.3 ± 0.6 TECU relative to the 8.4 ± 1.6 TECU level. On a relative scale, the decrease varied in the –16.5 to –46 % range over an average value of –(30 ± 9.7) %. The TEC values increased with lateral distance from the region of maximum shade, i.e., with decreasing of the magnitude of the SE, and their disturbances decreased. The time delay between the TEC minima and the SE maximum magnitude has been determined to vary in the 5...30-min range with the mean observed to be 18.3±8.5 min. In the course of the SE, in some cases, TEC exhibited quasi-periodic variations within the period range of 9…15 min and amplitude of 3…5%.ionosphere,

Keywords: aperiodic disturbance, quasi- periodic disturbance parameter, solar eclipse, total electron content
References: 

1. Afraimovich E. L., Perevalova N. P. (2006). GPS monitoring of the Earth's upper atmosphere. Irkutsk: SC RRS SB RAMS [In Russian].

2. Brunelli B. E., Namgaladze A. V. (1988). Physics of the ionosphere. (Moscow: Nauka).

3. Burmaka V. P., Domnin I. F., Chernogor L. F. (2012). Radiophysical observations of acoustic-gravity waves in the ionosphere during solar eclipse of January 4, 2011. Radio Phys. Radio Astron. 17(4), 344-352. [In Russian].

4. Garmash K. P., Leus S. G., Chernogor L. F. (2011). January 4, 2011 Solar Eclipse Effects over Radio Circuits at Oblique Incidence. Radio Phys. Radio Astron. 16(2), 164-176. [In Russian].
https://doi.org/10.1615/RadioPhysicsRadioAstronomy.v2.i4.50

http://rpra-journal.org.ua/index.php/ra/article/view/442

5. Chernogor L. F. (2009). Radio Physical and Geomagnetic Effects of Rocket Launches. (Kharkiv: V. N. Karazin Kharkiv National University Publ.) [In Russian].

6. Chernogor L. F. (2012). Physics and Ecology of Disasters. Kharkiv: V. N. Karazin Kharkiv National University Publ. [In Russian].

7. Chernogor L. F. (2013). Physical effects of solar eclipses in atmosphere and geospace: monograph. Kharkiv: V. N. Karazin Kharkiv National University Publ. [In Russian].

8. Chernogor L. F., Garmash K. P., Podnos V. A., Tyrnov O. F. (2013). The V. N. Karazin Kharkiv National University Radio physical Observatory - the tool for ionosphere monitoring in space experiments. Space Project "Ionosat-Micro". Kyiv: Academperiodika, 160-182. [In Russian].

9. Chernogor L. F. (2021). Geomagnetic effect of the solar eclipse on June 10, 2021. Kinemat. fiz. nebesnyh tel. 2022. 38(1). 16-34. [In Ukrainian].
https://doi.org/10.15407/kfnt2022.01.016

10. Chernogor L. F. (2021). Convection Effect in the Atmospheric Surface Layer in the Course of Solar Eclipses of 20 March 2015 and 10 June 2021. Kinemat. Phys. Celest. Bodies. 37(6), 19-33. [In Ukrainian].
https://doi.org/10.3103/S0884591321060039

11. Chernogor L. F. (2021). Thermal effect of the 10 June 2021 Annular Solar Eclipse in the Atmospheric Surface Layer. Kinemat. Phys. Celest. Bodies. 37(6), 34-48. [In Ukrainian].
https://doi.org/10.3103/S0884591321060040

12. Chernogor L. F. Garmash K. P. (2021). Ionospheric Processes During the 10 June 2021 Partial Solar Eclipse at Kharkiv. Kinemat. fiz. nebesnyh tel. 2022. 38(2). 3-22. [In Ukrainian].
https://doi.org/10.15407/kfnt2022.02.003

13. Chernogor L. F., Garmash K. P., Zhdanko Y. H., Leus S. G., Podnos V. A. (2020). Software and hardware system of multi-frequency oblique sounding the ionosphere. Visnyk of V.N. Karazin Kharkiv National University. Series "Radio Physics and Electronics". 30, 42-59.

14. Chernogor L. F., Garmash K. P., Zhdanko Y. H., Leus S. G., Luo, Y. (2021). Features of ionospheric effects from the partial solar eclipse over the city of Kharkiv on 10 June 2021. Radio Phys. Radio Astron. 26(4). 326-343. [in Ukrainian].
https://doi.org/10.15407/rpra26.04.326

15. Chernogor L. F., Holub М. Yu., Luo Y., Tsymbal А. М., Shevelev M. B. (2021). Variations in the Geomagnetic Field That Accompanied the 10 June 2021 Solar Eclipse. Visnyk of V. N. Karazin Kharkiv National University, series "Radio Physics and Electronics". 34. [In Ukrainian].

16. Chornogor L. F., Mylovanov Yu. B. (2020). Ionospheric effects of the solar eclipse on August 11, 2018 over China. Kinemat. Phys. Celest. Bodies. 36(6), 37-64.
https://doi.org/10.15407/kfnt2020.06.037

17. Adekoya B. J., Chukwuma V. U. (2016). Ionospheric F2 layer responses to total solar eclipses at low and mid-latitude. J. Atmos. and Solar-Terr. Phys. 138-139, 136-160.
https://doi.org/10.1016/j.jastp.2016.01.006

18. Beynon W. J. G., Brown G. M. (1956). Solar eclipses and the ionosphere. London: Elsevier. ISBN: 978-0080090467.

19. Burmaka V. P., Chernogor L. F. (2013). Solar eclipse of August 1, 2008, above Kharkov: 2. Observation results of wave disturbances in the ionosphere. Geomagnetism and Aeronomy. 53(4), 479-491.
https://doi.org/10.1134/S001679321304004X

20. Chapman S. (1932). The influence of a solar eclipse upon the upper atmospheric ionization. Mon. Not. R. Astron. Soc. 92, 413-420.
https://doi.org/10.1093/mnras/92.5.413

21. Chen G., Wu C., Huang X., Zhao Z., Zhong D., Qi H., Huang L., Qiao L., Wang J. (2015). Plasma flux and gravity waves in the midlatitude ionosphere during the solar eclipse of 20 May 2012. J. Geophys. Res.: Space Phys. 120, 3009-3020.
https://doi.org/10.1002/2014JA020849

22. Chen G., Zhao Z., Ning B., Deng Z., Yang G., Zhou C., Yao M., Li S., Li N. (2011). Latitudinal dependence of the ionospheric response to solar eclipse of 15 January 2010. J. Geophys. Res. 116, A06301.
https://doi.org/10.1029/2010JA016305

23. Cherniak I., Zakharenkova I. (2018). Ionospheric total electron content response to the great American solar eclipse of 21 August 2017. Geophys. Res. Lett. 45, 1199-1208.
https://doi.org/10.1002/2017GL075989

24. Chernogor L. F. (2010). Variations in the Amplitude and Phase of VLF Radiowaves in the Ionosphere during the August 1, 2008, Solar Eclipse. Geomag. Aeron. 50(1), 96-106.
https://doi.org/10.1134/S0016793210010111

25. Chernogor L. F. (2010). Wave Response of the Ionosphere to the Partial Solar Eclipse of August 1, 2008. Geomag. Aeron. 50(3), 346-361.
https://doi.org/10.1134/S0016793210030096

26. Chernogor L. F. (2011). The Earth - atmosphere - geospace system: main properties and processes. Int. J. Rem. Sens. 32(11), 3199-3218.
https://doi.org/10.1080/01431161.2010.541510

27. Chernogor L. F. (2012). Effects of solar eclipses in the ionosphere: Results of Doppler sounding: 1. Experimental data. Geomag. Aeron. 52(6), 768-778.
https://doi.org/10.1134/S0016793212050039

28. Chernogor L. F. (2012). Effects of solar eclipses in the ionosphere: Doppler sounding results: 2. Spectral analysis. Geomag. Aeron. 52(6), 779-792.
https://doi.org/10.1134/S0016793212050040

29. Chernogor L. F. (2013). Physical processes in the middle ionosphere accompanying the solar eclipse of January 4, 2011, in Kharkov. Geomag. Aeron. 53(1), 19-31.
https://doi.org/10.1134/S0016793213010052

30. Chernogor L. F. (2016). Wave processes in the ionosphere over Europe that accompanied the solar eclipse of March 20, 2015. Kinemat. Phys. Celest. Bodies. 32(4), 196-206.
https://doi.org/10.3103/S0884591316040024

31. Chernogor L. F. (2016). Atmosphere-ionosphere response to solar eclipse over Kharkiv on March 20, 2015. Geomag. Aeron. 56(5), 592-603.
https://doi.org/10.1134/S0016793216050030

32. Chernogor L. F., Rozumenko V. Т. (2008). Earth - atmosphere - geospace as an open nonlinear dynamical system. Radio Phys. Radio Astron. 13(2), 120-137. http://rpra-journal.org.ua/index.php/ra/article/view/563

33. Chernogor L. F., Garmash K. P. (2017). Magneto-ionospheric effects of the solar eclipse of March 20, 2015, over Kharkov. Geomag. Aeron. 57(1), 72-83.
https://doi.org/10.1134/S0016793216060062

34. Chernogor L. F., Domnin I. F., Emelyanov L. Ya., Lyashenko M. V. (2019). Physical processes in the ionosphere during the solar eclipse on March 20, 2015 over Kharkiv, Ukraine (49.6°N, 36.3°E). J. Atmos. Solar-Terr. Phys. 182, 1-9.
https://doi.org/10.1016/j.jastp.2018.10.016

35. Coster A. J., Goncharenko L., Zhang S. R., Erickson P. J., Rideout W., Vierinen J. (2017). GNSS observations of ionospheric variations during the 21 August 2017 solar eclipse. Geophys. Res. Lett. 44(24), 12041-12048.
https://doi.org/10.1002/2017GL075774

36. Crustal Dynamics Data Information System (CDDIS DAAC). (2014). International GNSS Service, Daily 30-second observation data. ftp://cddis.nasa.gov/gnss/products/bias/, webigs.ign.fr/gdc/en/data/search

37. Dang T., Lei J., Wang W., Burns A., Zhang B. and Zhang S.-R. (2018). Suppression of the polar tongue of ionization during the 21 August 2017 solar eclipse. Geophys. Res. Lett. 45(7), 2918-2925.
https://doi.org/10.1002/2018GL077328

38. Dang T., Lei J., Wang W., Zhang B., Burns A., Le H., Wu Q., Ruan H., Dou X., Wan W. (2018). Global responses of the coupled thermosphere and ionosphere system to the August 2017 Great American Solar Eclipse. J. Geophys. Res.: Space Phys. 123, 7040-7050.
https://doi.org/10.1029/2018JA025566

39. Ding F., Wan W., Ning B., Liu L., Le H., Xu G., Wang M., Li G., Chen Y., Ren Z., Xiong B., Hu L., Yue X., Zhao B., Li F., Yang M. (2010). GPS TEC response to the 22 July 2009 total solar eclipse in East Asia. J. Geophys. Res. 115, A07308.
https://doi.org/10.1029/2009JA015113

40. Domnin I. F., Yemel'yanov L. Y., Kotov D. V., Lyashenko M. V., and Chernogor L. F. (2013). Solar eclipse of August 1, 2008, above Kharkov: 1. Results of incoherent scatter observations. Geomagnetism and Aeronomy. 53(1), 113-123.
https://doi.org/10.1134/S0016793213010076

41. Eccles W. H. (1912). Effect of the eclipse on wireless telegraphic signals. Electrician. 69, 109-117.

42. Espenak F. (2021). Annular Solar Eclipse of 2021 Jun 10.

http://www.eclipsewise.com/solar/SEprime/2001-2100/SE2021Jun10Aprime.html

43. Gossard E. E., Hooke W. H. (1975). Waves in the Atmosphere. New York: Elsevier.

44. Guo Q., Chernogor L. F., Garmash K. P., Rozumenko V. T., Zheng Y. (2020). Radio Monitoring of Dynamic Processes in the Ionosphere Over China During the Partial Solar Eclipse of 11 August 2018. Radio Sci. 55(2).
https://doi.org/10.1029/2019RS006866

45. Higgs A. J. (1942). Ionospheric measurements made during the total Solar eclipse of 1940, October 1-st, South Africa. Mon. Notic. Roy. Astron. Soc. 102(1), 24-34.
https://doi.org/10.1093/mnras/102.1.24

46. Hofmann-Wellenhof B., Lichtenegger H., Collins J. (2001). Global Positioning System. Theory and Practice. Springer-Verlag Wien New York. XXIV, 382 p.
https://doi.org/10.1007/978-3-7091-6199-9

47. Huba J. D., Drob D. (2017). SAMI3 prediction of the impact of the 21 August 2017 total solar eclipse on the ionosphere/plasmasphere system. Geophys. Res. Lett. 44, 5928-5935.
https://doi.org/10.1002/2017GL073549

48. Le H., Liu L., Ding F., Ren Z., Chen Y., Wan W., Ning B., Xu G., Wang M., Li G., Xiong B., Hu L. (2010). Observations and modeling of the ionospheric behaviors over the east Asia zone during the 22 July 2009 solar eclipse. J. Geophys. Res. 115(A10313).
https://doi.org/10.1029/2010JA015609

49. Ledig P. G., Jones M. W., Giesecke A. A., Chernosky E. J. (1946). Effects on the ionosphere at Huancayo, Peru, of the solar eclipse, January 25, 1944. J. Geophys. Res. 51(3), 411-418.
https://doi.org/10.1029/TE051i003p00411

50. Lyashenko M. V., Chernogor L. F. (2013). Solar eclipse of August 1, 2008, over Kharkov: 3. Calculation results and discussion. Geomagnetism and Aeronomy. 53(3), 367-376.
https://doi.org/10.1134/S0016793213020096

51. Madhav Haridas M. K., Manju G. (2012). On the response of the ionospheric F region over Indian low-latitude station Gadanki to the annular solar eclipse of 15 January 2010. J. Geophys. Res. 117(A1), A01302.
https://doi.org/10.1029/2011JA016695

52. Marlton G. J., Williams P. D., Nicoll K. A. (2016). On the detection and attribution of gravity waves generated by the 20 March 2015 solar eclipse. Phil. Trans. R. Soc. A. 374(2077).
https://doi.org/10.1098/rsta.2015.0222

53. Marple Jr. S. L. (1987). Digital spectral analysis: with applications. Englewood Cliffs, N.J.: Prentice-Hall.

54. Panasenko S. V., Otsuka Y., van de Kamp M., Chernogor L. F., Shinbori A., Tsugawa T. and Nishioka M. (2019). Observation and characterization of traveling ionospheric disturbances induced by solar eclipse of 20 March 2015 using incoherent scatter radars and GPS networks. J. Atmos. Solar-Terr. Phys. 191, 105051.
https://doi.org/10.1016/j.jastp.2019.05.015

55. Pitout F., Blelly P.-L., Alcayde D. (2013). High-latitude ionospheric response to the solar eclipse of 1 August 2008: EISCAT observations and TRANSCAR simulation. J. Atmos. and Solar-Terr. Phys. 105, 336-349.
https://doi.org/10.1016/j.jastp.2013.02.004

56. Schunk R. W., Nagy A. F. (2000). Ionospheres: Physics, Plasma Physics, and Chemistry. Cambridge: Cambridge Atmospheric and Space Science Series.
https://doi.org/10.1017/CBO9780511551772

57. Sharma S., Dashora N., Galav P., Pandey R. (2010). Total solar eclipse of July 22, 2009: Its impact on the total electron content and ionospheric electron density in the Indian zone. J. Atmos. and Solar-Terr. Phys. 72(18), 1387-1392.
https://doi.org/10.1016/j.jastp.2010.10.006

58. Stankov S. M., Bergeot N., Berghmans D., Bolsée D., Bruyninx C., Chevalier J. M., Clette F., de Backer H., de Keyser J., D'huys E., Dominique M., Lemaire J. F., Magdalenič J., Marqué C., Pereira N., Pierrard V., Sapundjiev D., Seaton D. B., Stegen K., Linden R. V., Verhulst T. G. W., West M. J. (2017). Multi-instrument observations of the solar eclipse on 20 March 2015 and its effects on the ionosphere over Belgium and Europe. J. Space Weather Space Clim. 7, A19.
https://doi.org/10.1051/swsc/2017017

59. The Receiver Independent Exchange Format. Version 3.02. International GNSS Service (IGS).

60. Universit@t Bern, Astronomisches Institut, ftp.aiub.unibe.ch/CODE/

61. Uryadov V. P., Kolchev A. A., Vybornov F. I., Shumaev V. V., Egoshin A. I., Chernov A. G. (2016). Ionospheric effects of a solar eclipse of March 20, 2015 on oblique sounding paths in the Eurasian longitudinal sector. Radiophys. Quantum Electron. 59(6), 431-441.
https://doi.org/10.1007/s11141-016-9711-9

62. Verhulst T. G. W., Sapundjiev D., Stankov S. M. (2016). High-resolution ionospheric observations and modeling over Belgium during the solar eclipse of 20 March 2015 including first results of ionospheric tilt and plasma drift measurements. Adv. Space Res. 57(11), 2407-2419.
https://doi.org/10.1016/j.asr.2016.03.009

https://doi.org/10.1016/j.asr.2016. 03.009

63. Wang N., Yuan Y., Li Z., Montenbruck O., Tan B. (2016). Determination of differential code biases with multi-GNSS observations. J. Geodesy. 90(3), 209-228.
https://doi.org/10.1007/s00190-015-0867-4

64. Wang W., Dang T., Lei J., Zhang S., Zhang B., Burns A. (2019). Physical processes driving the response of the F2 region ionosphere to the 21 August 2017 solar eclipse at Millstone Hill. J. Geophys. Res.: Space Phys. 124, 2978-2991.
https://doi.org/10.1029/2018JA025479

65. World Data Center for Geomagnetism, Kyoto. URL: http://wdc.kugi.kyoto-u.ac.jp

66. Zhang S.-R., Erickson P. J., Goncharenko L. P., Coster A. J., Rideout W., Vierinen J. (2017). Ionospheric bow waves and perturbations induced by the 21 August 2017 solar eclipse. Geophys. Res. Lett. 44, 12,067-12,073.
https://doi.org/10.1002/2017GL076054