Characteristic features of the magnetic and ionospheric storms of December 21—24, 2016

Luo, Y, 1Chernogor, LF
1V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2022, 38(5):51-80
https://doi.org/10.15407/kfnt2022.05.051
Start Page: Dynamics and Physics of Solar System Bodies
Language: Ukrainian
Abstract: 

Solar storms accompanied by solar flares, coronal mass ejections, and by high-speed flows result in considerable disturbances in the Sun — interplanetary medium — magnetosphere — ionosphere — atmosphere — Earth (internal geospheres) system. As a result, geospace storms arise at our planet, which are synergistically coupling magnetic, ionospheric, atmospheric, and electric storms. Magnetic and ionospheric storms have been studied for a long time, but atmospheric storms have been studied considerably less, as well as the electrical storms have been. Geospace storms and their components exhibit significant variability. It may be asserted that the same two storms do not exist. Therefore, a comprehensive study of each new geospace storm, its manifestations, and features is a pressing scientific issue. This will contribute to an adequate process of their modeling and, in the future, forecasting. The purpose of this paper is to present observations of ionospheric and magnetic storm features, which accompanied the geospace storm of December 21—24, 2016. The state of the geomagnetic field was observed via the fluxmeter magnetometer located at the V. N. Karazin Kharkiv National University Magnetometer Observatory (49°38` N, 36°56` E). The dynamics of the ionospheric plasma was monitored by the Doppler radar at vertical incidence and by the digisonde located at the V. N. Karazin Kharkiv National University Radio Physics Observatory (49°38` N, 36°20` E). The Doppler radar operated at 3.2 and 4.2 MHz; however, only the 3.2-MHz measurements are presented below, since the 4.2-MHz turned out not to be efficient at nighttime when foF2 ~ 2 MHz, which prevented signal reflection from the ionosphere even at 3.2 MHz. Prior to the beginning of the December 20, 2016 magnetic storm, the level of H- and D-components seldom exceeded 0.2…0.7 nT. The sudden storm commencement between 06:00 and 10:00 UT virtually did not affect the level. During the second half of the December 21, 2016, the level of fluctuations exhibited sporadic increases from ~1 to 3…4 nT. During the next few days, up to December 25, 2016, their level showed variations mainly from ~1 to ~2 nT. For the H component, the level showed increases predominantly during the 05:00...15:00 UT period, and for the D component during 10:00...20:00 UT interval. The weak (power of 20 GJ/s and energy of about 0.45 PJ) geospace storm of 21—24 December, 2016 was accompanied by moderate positive ionospheric storm, as well as by three negative ionospheric storms, one of which was very strong, and the other two were strong and moderate. The geospace storm was accompanied by a moderate magnetic storm, energy of about 2 PJ and power of about 56 GW. The positive ionospheric storm did not virtually affected the level of the signal reflected from the ionosphere, whereas the reflected signal was very weak or altogether absent during the negative ionospheric storms. The positive ionospheric storm significantly affected the Doppler shift, when the wave activity enhanced in the ionosphere. The relative amplitude of disturbances in the electron density increased from a few percent to ~50 %, and the period from 6…12 to 40 min. It was not possible to follow wave activity during the negative ionospheric storms. In the course of a long magnetic storm in the period subrange 200…1,000 s, the level of D- and H-components increased from 0.2…0.3 and 0.3…0.5 to 1.0…2.0 nT and 1.0…1.8 nT, respectively. In the period subrange 50…200 s, the level increased from 0.3…0.5 and 0.3…0.5 to 0.5…1.0 and 1.5…2.0 nT. Within the period subrange 10...50 s, the level increased from 0.05…0.06 and 0.10…0.15 nT to 0.20…0.30 and 0.5…1.0 nT. Comparative studies of two geospace storms of December 21—24, 2016 and of March 21—23, 2017 showed that the ionospheric and magnetic effects, despite their differences, were comparable.

Keywords: Doppler shift of frequency, geospace storm, ionosphere, ionospheric effect, magnetic storm, perturbation parameters, quasi-periodic perturbation, radio wave reflection level

Full text (PDF)

References: 

1. Grigorenko Ye. I., Emelyanov L. Ya., Pazura S. A., Chernogor L. F. (2007). Ionospheric processes during the 7-10 November 2004 extreme geospace storm. 1. Observation results. Space Science and Technology. 13(4). 62-76 [in Russian].
https://doi.org/10.15407/knit2007.04.062

2. Grigorenko Ye. I., Pazura S. A., Chernogor L. F. (2007). Ionospheric processes during the 7-10 November 2004 extreme geospace storm. 2. Simulation results and discussion. Space Science and Technology. 13(4). 77-90 [in Russian].
https://doi.org/10.15407/knit2007.04.077

3. Grigorenko Y. I., Lysenko V. N., Taran V. I. Chernogor L. F. (2003). Radio studies of processes in the ionosphere associated with the strongest September 25, 1998 geomagnetic storm. Uspekhi sovremennoi radioelektroniki. 9. 57-94 [in Russian].

4. Grigorenko E. I., Lysenko V. N., Taran V. I., Chernogor L. (2005). F. Specific features of the ionospheric storm of March 20-23, 2003. Geomagnetism and Aeronomy. 45(6). 745-757 [in Russian].

5. Grigorenko Ye. I., Lysenko V. N., Taran V. I., Chernogor L. F. (2007). Analysis and classification of ionosphere storms at the midlatitudes of Europe. 1. Space Science and Technology. 13(5). 58-76 [in Russian].
https://doi.org/10.15407/knit2007.05.058

6. Grigorenko Ye. I., Lysenko V. N., Taran V. I., Chernogor L. F. (2007). Analysis and classification of ionosphere storms at the midlatitudes of Europe. 2. Space Science and Technology. 13(5). 77-96 [in Russian].
https://doi.org/10.15407/knit2007.05.077

7. Grigorenko E. I., Lysenko V. N., Pazyura S. A., Taran V. I., Chernogor L. F. (2007). Ionospheric disturbances during the severe magnetic storm of November 7-10, 2004. Geomagnetism and Aeronomy. 47(6). 720-738.
https://doi.org/10.1134/S0016793207060059

8. Grigorenko E. I., Pazura S. A., Taran V. I., Chernyaev S. V., Chernogor L. F. (2005). Dynamic processes in the ionosphere during the severe magnetic storm of May 30-31, 2003. Geomagnetism and Aeronomy. 45(6). 758-777.

9. Danilov A. D. (2013). F2-region response to geomagnetic disturbances (review). Geliogeofiz. Issled. 5. 1-33 [in Russian].

10. Danilov A. D., Morozova L. D. (1985). Ionospheric storms in the F2 region. Morphology and physics (review). Geomagnetism and Aeronomy. 25(5). 705-721 [in Russian].

11. Emelyanov L. Ya., Katsko S. V., Chernogor L. F. (2019). Ionospheric effects of geospace storms on December 21-24, 2016 and March 21-23, 2017. Bull. Nat. Tech. Univ. "KhPI", Series: Radiophys. and ionosphere. 25(1350). 78-85.

12. Katsko S. V., Emelyanov L. Ya., Chernogor L. F. (2021). Features of the Ionospheric Storm on December 21-24, 2016. Kinematics and Phys. Celestial Bodies. 37(2). 85-95.
https://doi.org/10.3103/S0884591321020045

13. Panasenko S. V., Chernogor L. F. (2007). Event of the November 7-10, 2004, magne¬tic storm in the lower ionosphere. Geomagnetism and Aeronomy. 47(5). 608-620.
https://doi.org/10.1134/S0016793207050106

14. Chernogor L. F. (2008). Advanced methods of spectral analysis of quasiperiodic wave-like processes in the ionosphere: Specific features and experimental results. Geomagnetism and Aeronomy. 48(5). 652-673.
https://doi.org/10.1134/S0016793208050101

15. Chernogor L. F., Garmash K. P., Podnos V. A., Tyrnov O. F. (2013). The V. N. Karazin Kharkiv National University Radiophysical Observatory - the tool for ionosphere monitoring in space experiments. Space Project «Ionosat-Micro» (Eds S. A. Zasukha, O. P. Fedorov). Kyiv: Akademperiodika Publ., 160-182 [in Russian].

16. Chernogor L. F., Garmash K. P., Guo Q., Zheng Y. (2021). Effects of the strong ionospheric storm of August 26, 2018: Results of multipath radiophysical monitoring. Geomagnetism and Aeronomy. 61(1). 73-91.
https://doi.org/10.1134/S001679322006002X

17. Chernogor L. F., Domnin I. F. (2014). Physics of geospace storms. Kharkiv: V. N. Karazin Kharkiv National University Publ. [in Russian].

18. Chernogor L. F., Shevelev M. B. (2020). Latitudinal dependence of quasi-periodic variations in the geomagnetic field during the greatest geospace storm of September 7-9, 2017. Space Science and Technol. 26(2). 72-83.
https://doi.org/10.15407/knit2020.02.072

19. Chernogor L. F. (2021). Physics of geospace storms. Space Science and Technol. 27(1(128)). 3-77. DOI: 10.15407/knit2021.01.003
https://doi.org/10.15407/knit2021.01.003

20. Chernogor L. F. (2021). Statistical characteristics of geomagnetic storms in the 24th cycle of solar activity. Kinematics and Phys. Celestial Bodies. 37(4). 49-59.
https://doi.org/10.15407/kfnt2021.04.049

DOI: 10.15407/kfnt2021.04.049
https://doi.org/10.15407/kfnt2021.04.049

21. Chernogor L. F., Holub M. Yu., Luo Y. (2020). Statistical characteristics of geomagnetic storm activity during solar cycle 24, 2009-2020. Visnyk of V. N. Karazin Kharkiv National University, Series "Radio Phys. and Electronics". 33. 69-77. DOI: 10.26565/2311-0872-2020-33-06
https://doi.org/10.26565/2311-0872-2020-33-06

22. Yasyukevich Yu. V., Perevalova N. P., Edemskiy I. K., Poliakova A. S. (2013). The response of the ionosphere to solar and geophysical disturbing factors according to GPS, monograph. Irkutsk: ISU Publishing House, 259.

23. Anisimov S. V., Shikhova N. M., Kleimenova N. G. (2021). Response of a magnetospheric storm in the atmospheric electric field of the midlatitudes. Geomagn. Aeron. 61. 180-190.
https://doi.org/10.1134/S001679322102002X

24. Blagoveshchensky D. V. (2020). Effects of geomagnetic storms in the low-latitude ionosphere. Cosmic Res. 58(4). 234-241.
https://doi.org/10.1134/S0010952520040024

25. Blagoveshchensky D. V., Sergeeva M. A. (2019). Impact of geomagnetic storm of September 7-8, 2017 on ionosphere and HF propagation: A multi-instrument study. Adv. Space Res. 63(1). 239-256.
https://doi.org/10.1016/j.asr.2018.07.016

26. Blagoveshchensky D. V., Zhbankov G. A., Maltseva O. A. (2019). Observed and calculated ionograms of oblique ionospheric sounding on HF radio paths during a magnetic storm of September 7-8, 2017. Radiophysics and Quantum Electronics. 61(12). 881-892.
https://doi.org/10.1007/s11141-019-09944-3

27. Bolaji O. S., Fashae J. B., Adebiyi S. J., Owolabi C., Adebesin B. O., Kaka R. O., Jewel Ibanga, Abass M., Akinola O. O., Adekoya B. J., Younas W. (2021). Storm time effects on latitudinal distribution of ionospheric TEC in the American and Asian-Australian sectors: August 25-26, 2018 Geomagnetic Storm. J. Geophys. Res. 126(8). Paper no. e2020JA029068 DOI: 10.1029/2020JA029068
https://doi.org/10.1029/2020JA029068

28. Bothmer V., Daglis I. (2007). Space Weather: Physics and Effects. Springer-Verlag New York. 438. ISBN 3-642-06289-X.
https://doi.org/10.1007/978-3-540-34578-7

29. Buonsanto M. J. (1999). Ionospheric Storms - A Review. Space Science Reviews. 88. 563-601. DOI: 10.1023/A:1005107532631
https://doi.org/10.1023/A:1005107532631

30. Chernogor L. F., Garmash K. P., Guo Q., Luo Y., Rozumenko V. T., Zheng Y. (2020). Ionospheric storm effects over the People's Republic of China on 14 May 2019: Results from multipath multi-frequency oblique radio sounding. Adv. Space Res. 66(2). 226-242. DOI: 10.1016/j.asr.2020.03.037
https://doi.org/10.1016/j.asr.2020.03.037

31. Chernogor L. F., Garmash K. P., Guo Q., Rozumenko V. T. Zheng Y. (2021). Radio wave characteristics distorted during geospace storm: Results of multi-frequency multiple path oblique sounding of ionosphere. 2021 IEEE 3rd Ukraine Conference on Electrical and Computer Engineering (UKRCON). Lviv, Ukraine, August 26 - 28. 151-156. DOI: 10.1109/UKRCON53503.2021.9576010
https://doi.org/10.1109/UKRCON53503.2021.9576010

32. Chernogor L. F., Grigorenko Ye. I., Lysenko V. N., Taran V. I. (2007). Dynamic processes in the ionosphere during magnetic storms from the Kharkov incoherent scatter radar observations. Int. J. Geomagn. Aeron. 7. GI3001. DOI: 10.1029/2005GI000125
https://doi.org/10.1029/2005GI000125

33. Chernogor L. F., Zheng Y., Guo Q., Luo Y., Garmash K. P., Rozumenko V. T. Features of Ionospheric and Magnetic Effects of August 5-6, 2019 Noticeable Geospace Storm Over China and Ukraine. Problems of Geocosmos-2020. 2022. Chapter 28. Springer Nature Switzerland AG P. 379-396.
https://doi.org/10.1007/978-3-030-91467-7_28

34. D'Angelo G., Piersanti M., Alfonsi L., Spogli L., Clausen L. B. N., Coco I., Li G., Baiqi N. (2018). The response of high latitude ionosphere to the 2015 St. Patrick's day storm from in situ and ground based observations. Adv. Space Res. 62(3). 638-650. DOI: 10.1016/j.asr.2018.05.005
https://doi.org/10.1016/j.asr.2018.05.005

35. Danilov A. D., Lastovika J. (2001). Effects of geomagnetic storms on the ionosphere and atmosphere. Inter. J. Geomagn. Aeron. 2(3). 209-224.

36. Despirak I. V., Kleimenova N. G., Gromova L. I., Gromov S. V., Malysheva L. M. (2020). Supersubstorms during Storms of September 7-8, 2017. Geomagn. Aeron. 60(3). 292-300. DOI: 10.1134/S0016793220030044
https://doi.org/10.1134/S0016793220030044

37. Devi M., Patgiri S., Barbara A. K., Gordiyenko G., Depueva A., Depuev V., Ruzhin Y. Y. (2018). Storm time ionospheric-tropospheric dynamics: a study through ionospheric and lower atmospheric variability features of high/mid and low latitudes. Geomagn. Aeron. 2018. 58(7). 857-870. DOI: 10.1134/S001679321807006X
https://doi.org/10.1134/S001679321807006X

38. Dmitriev A. V., Suvorova A. V., Klimenko M. V., Klimenko V. V., Ratovsky K. G., Rakh¬ma¬tulin R. A., Parkhomov V. A. (2017). Predictable and unpredictable ionospheric disturbances during St. Patrick's Day magnetic storms of 2013 and 2015 and on 8-9 March 2008. J. Geophys. Res. 122(2). 2398-2423.
https://doi.org/10.1002/2016JA023260

39. Fejer B. G., Navarro L. A., Sazykin S., Newheart A., Milla M. A., Condor P. (2021). Prompt penetration and substorm effects over Jicamarca during the September 2017 geomagnetic storm. J. Geophys. Res. 126(8). e2021JA029651.
https://doi.org/10.1029/2021JA029651

40. Feng J., Zhou Y., Zhou Y., Gao S., Zhou C., Tang Q., Liu Y. (2021). Ionospheric response to the 17 March and 22 June 2015 geomagnetic storms over Wuhan region using GNSS-based tomographic technique. Adv. Space Res. 67(1). 111-121.
https://doi.org/10.1016/j.asr.2020.10.008

41. Fuller-Rowell T. J., Codrescu M. V., Roble R. G., Richmond A. D. (1998). How does the thermosphere and ionosphere react to a geomagnetic storm? Magnetic storms. Geophysical monograph series. 98. American Geophysical Union, Washington, D.C. 203-226. DOI: 10.1029/GM098
https://doi.org/10.1029/GM098

42. Ghodpage R. N., Patil P. T., Gurav O. B., Gurubaran S., Sharma A. K. (2018). Ionospheric response to major storm of 17th March 2015 using multi-instrument data over low latitude station Kolhapur (16.8N, 74.2E, 10.6dip. Lat.). Adv. Space Res. 62(3). 624-637. DOI: 10.1016/j.asr.2018.05.003
https://doi.org/10.1016/j.asr.2018.05.003

43. Gonzalez W. D., Jozelyn J. A., Kamide Y., Kroehl H. W., Rostoker G., Tsurutani B. T., Vasyliunas V. M. (1994). What is a geomagnetic storm? J. Geophys. Res. 99(A4). 5771-5792. DOI: 10.1029/93JA02867
https://doi.org/10.1029/93JA02867

44. Hashimoto K. K., Kikuchi T., Tomizawa I., Hosokawa K., Chum J., Buresova D., Nose M., Koga K. (2020). Penetration electric fields observed at middle and low latitudes during the 22 June 2015 geomagnetic storm. Earth, Planets and Space. 72(1). 71. DOI: 10.1186/s40623-020-01196-0
https://doi.org/10.1186/s40623-020-01196-0

45. Horvath I., Lovell B. C. (2021). Magnetosphere-Ionosphere-Thermosphere (M-I-T) coupling leading to equatorial upward and westward drifting supersonic plasma bubble development and Amplified Subauroral Polarization Streams (SAPS) during the January 21, 2005 moderate storm. J. Geophys. Res.: Space Phys. 126(5). e2020JA028548. DOI: 10.1029/2020JA028548
https://doi.org/10.1029/2020JA028548

46. Huang C.-S., Zhang Y. (2021). Equatorial Plasma Drifts During the Magnetic Storm on November 7-11, 2004: Identifications of the Roles of Penetration and Disturbance Dynamo Electric Fields With Multi-Instrumental Measurements. J. Geophys. Res.: Space Phys. 126(9). e2021JA029386. DOI: 10.1029/2021JA029386
https://doi.org/10.1029/2021JA029386

47. Imtiaz N., Younas W., Khan M. (2020). Response of the low-to mid-latitude ionosphere to the geomagnetic storm of September 2017. Ann. Geophys. 38(2). 359-372. DOI: 10.5194/angeo-38-359-2020
https://doi.org/10.5194/angeo-38-359-2020

48. Jiang C., Yang G., Liu J., Yokoyama T., Liu T., Lan T., Zhou C., Zhang Y., Zhao Z., Komolmis T., Supnithi P., Yatini C. Y. (2017). Equatorial and low-latitude ionospheric response to the 17-18 March 2015 great storm over South East Asia longitude sector. J. Geophys. Res. 122(5). 5756-5767. DOI: 10.1002/2017JA024134
https://doi.org/10.1002/2017JA024134

49. Jimoh O., Lei J., Zhong J., Owolabi C., Luan X., Dou X. (2019). Topside Ionospheric Conditions During the 7-8 September 2017 Geomagnetic Storm. J. Geophys. Res. 124(11). 9381-9404. DOI: 10.1029/2019JA026590
https://doi.org/10.1029/2019JA026590

50. Jin S., Jin R., Kutoglu H. (2017). Positive and Negative Ionospheric Responses to the March 2015 Geomagnetic Storm from BDS Observations. J. Geodes. 91(6). 613- 626. DOI: 10.1007/s00190-016-0988-4
https://doi.org/10.1007/s00190-016-0988-4

51. Jonah O. F., Coster A., Zhang S., Goncharenko L., Erickson P. J., de Paula E. R., Kherani E. A. (2018). TID observations and source analysis during the 2017 Memorial Day weekend geomagnetic storm over North America. J. Geophys. Res. 123(10). 8749-8765. DOI: 10.1029/2018JA025367
https://doi.org/10.1029/2018JA025367

52. Karan D. K., Pallamraju D. (2018). Effect of geomagnetic storms on the daytime low-latitude thermospheric wave dynamics. J. Atmos. and Solar-Terr. Phys. 170. 35-47. DOI: 10.1016/j.jastp.2018.02.003
https://doi.org/10.1016/j.jastp.2018.02.003

53. Katsko S. V., Emelyanov L. Y., Chernogor L. F. (2021). Ionosphere response to space weather events on 21-23 March 2017 in the central region of Europe. 2021 XXXIV General Assembly and Scientific Symp. Int. Union Radio Sci. (URSI GASS). 01-04. DOI: 10.23919/URSIGASS51995.2021.9560587
https://doi.org/10.23919/URSIGASS51995.2021.9560587

54. Kumar S., Kumar V. V. (2019). Ionospheric response to the St. Patrick's Day space weather events in March 2012, 2013, and 2015 at southern low and middle latitudes. J. Geophys. Res. 124(1). 584-602. DOI: 10.1029/2018JA025674
https://doi.org/10.1029/2018JA025674

55. Kumar V. V., Parkinson M. L. (2017). A global scale picture of ionospheric peak elect¬ron density changes during geomagnetic storms. Space Weather. 15(4). 637-652. DOI: 10.1002/2016SW001573
https://doi.org/10.1002/2016SW001573

56. Latovika J. (1996). Effects of geomagnetic storms in the lower ionosphere, middle atmosphere and troposphere. J. Atmos. Terr. Phys. 58(7). 831-843.
https://doi.org/10.1016/0021-9169(95)00106-9

57. Lei J., Huang F., Chen X., Zhong J., Ren D., Wang W., Yue X., Luan X., Jia M., Dou X., Hu L., Ning B., Owolabi C., Chen J., Li G., Xue X. (2018). Was magnetic storm the only driver of the long-duration enhancements of daytime total electron content in the Asian-Australian sector between 7 and 12 September 2017? J. Geo¬phys. Res. 123(4). 3217-3232. DOI: 10.1029/2017JA025166
https://doi.org/10.1029/2017JA025166

58. Li S. (2021). Temporal evolution analysis of storm-enhanced density during an intense magnetic storm on March 2015. Adv. Space Res. 67(5). 1570-1579.
https://doi.org/10.1016/j.asr.2020.12.004

59. Lissa D., Srinivasu V.K.D., Prasad D.S.V.V.D., Niranjan K. (2020). Ionospheric response to the 26 August 2018 geomagnetic storm using GPS-TEC observations along 80E and 120E longitudes in the Asian sector. Adv. Space Res. 66(6). 1427- 1440. DOI: 10.1016/j.asr.2020.05.025
https://doi.org/10.1016/j.asr.2020.05.025

60. Liu G., Shen H. (2017). A severe negative response of the ionosphere to the intense geomagnetic storm on March 17, 2015 observed at mid- and low-latitude stations in the China zone. Adv. Space Res. 59(9). 2301-2312.
https://doi.org/10.1016/j.asr.2017.02.021

61. Liu J., Zhang D.-H., Coster A. J., Zhang S.-R., Ma G.-Y., Hao Y.-Q., Xiao Z. (2019). A case study of the large-scale traveling ionospheric disturbances in the eastern Asian sector during the 2015 St. Patrick's Day geomagnetic storm. Ann. Geophys. 37(4). 673-687. DOI: 10.5194/angeo-37-673-2019
https://doi.org/10.5194/angeo-37-673-2019

62. Luo Y., Chernogor L. F., Garmash K. P., Guo Q., Rozumenko V. T., Zheng Yu. (2021). Dynamic processes in the magnetic field and in the ionosphere during the 30 August 2 September, 2019 geospace storm. Ann. Geophys. 39(4).
https://doi.org/10.5194/angeo-39-657-2021

63. Luo Y., Guo Q., Zheng Y., Garmash K. P., Chernogor L. F., Shulga S. M. (2021). Geo¬spa¬ce storm effects on August 5-6, 2019. Space Science and Technology. 27(2(129)). 45-69. https://doi.org/10.15407/knit2021.02.045
https://doi.org/10.15407/knit2021.02.045

64. Mannucci A. J., Tsurutani B. T., Iijima B. A., Komjathy A., Saito A., Gonzalez W. D., Guarnieri, F. L., Kozyra, J. U., Skoug, R. (2005). Dayside global ionospheric response to the major interplanetary events of October 29-30, 2003 "Halloween storms". Geophys. Res. Lett. 32. L12S02. DOI: 10.1029/2004GL021467
https://doi.org/10.1029/2004GL021467

65. Mansilla G. A., Zossi M. M. (2020). Longitudinal variation of the ionospheric response to the 26 August 2018 geomagnetic storm at equatorial/low latitudes. Pure Appl. Geophys. 177(12). 5833-5844. DOI: 10.1007/s00024-020-02601-1
https://doi.org/10.1007/s00024-020-02601-1

66. Matsushita S. (1959). A study of the morphology of ionospheric storms. J. Geophys. Res. 64(4). 305-321. DOI: 10.1029/JZ064i003p00305
https://doi.org/10.1029/JZ064i003p00305

67. Michnowski S., Odzimek A., Kleimenova N. G., Kozyreva O. V., Kubicki M., Klos Z., Israelsson S., Nikiforova N. N. (2021). Review of relationships between solar wind and ground-level atmospheric electricity: Case studies from Hornsund, Spitsbergen, and Swider, Poland. Surveys in Geophys. 42(3). 757-801.
https://doi.org/10.1007/s10712-021-09639-3

68. Navarro L. A., Fejer B. G. (2020). Storm-time coupling of equatorial nighttime F region neutral winds and plasma drifts. J. Geophys. Res.: Space Phys. 125(9). e2020JA028253. DOI: 10.1029/2020JA028253
https://doi.org/10.1029/2020JA028253

69. Ngwira C. M., Habarulema J.-B., Astafyeva E., Yizengaw E., Jonah O. F., Crowley G., Gisler A., Coffey V. (2019). Dynamic response of ionospheric plasma density to the geomagnetic storm of 22-23 June 2015. J. Geophys. Res. 124(8). 7123-7139. DOI: 10.1029/2018JA026172
https://doi.org/10.1029/2018JA026172

70. Nykiel G., Zanimonskiy Y. M., Yampolski Yu. M., Figurski M. (2017). Efficient usage of dense GNSS networks in central Europe for the visualization and investigation of ionospheric TEC variations. Sensors. 17(10). 2298. DOI: 10.3390/s17102298
https://doi.org/10.3390/s17102298

71. Olwendo O. J., Cesaroni C., Yamazaki Y., Cilliers P. (2017). Equatorial ionospheric disturbances over the East African sector during the 2015 St. Patrick's day storm. Adv. Space Res. 60(8). 1817-1826. DOI: 10.1016/j.asr.2017.06.037
https://doi.org/10.1016/j.asr.2017.06.037

72. Paul B., De B. K., Guha A. (2018). Latitudinal variation of F-region ionospheric response during three strongest geomagnetic storms of 2015. Acta Geodaetica et Geophysica. 53(4). 579-606. DOI: 10.1007/s40328-018-0221-4
https://doi.org/10.1007/s40328-018-0221-4

73. Picano G. A. S., Denardini C. M., Nogueira P. A. B., Barbosa-Neto P. F., Resende L. C. A., Chen S. S., Carmo C. S., Moro J., Romero-Hernandez E., Silva R. P. (2021). Equatorial ionospheric response to storm-time electric fields during two intense geomagnetic storms over the Brazilian region using a Disturbance Ionosphere indeX. J. Atmos. and Solar-Terr. Phys. 223. 105734. DOI: 10.1016/j.jastp.2021.105734
https://doi.org/10.1016/j.jastp.2021.105734

74. Piersanti M., Cesaroni C., Spogli L., Alberti T. (2017). Does TEC react to a sudden impulse as a whole? The 2015 Saint Patrick's day storm event. Adv. Space Res. 60(8). 1807-1816. DOI: 10.1016/j.asr.2017.01.021
https://doi.org/10.1016/j.asr.2017.01.021

75. Polekh N., Zolotukhina N., Kurkin V., Zherebtsov G., Shi J., Wang G., Wang Z. (2017). Dynamics of ionospheric disturbances during the 17-19 March 2015 geomagnetic storm over East Asia. Adv. Space Res. 60(11). 2464-2476.
https://doi.org/10.1016/j.asr.2017.09.030

76. Prlss G. W. (1995). Ionospheric F-region storms. Handbook of Atmospheric Electrodynamics. Edited by H. Volland. CRC Press, Roca Raton, Fla. 2. 195-248.

77. Prlss G. W. (1998). Magnetic storm associated perturbations of the upper atmosphere, Magnetic storms. Geophys. monograph series. 98. Eds Tsurutani B. T., Gonzalez W. D., Kamide Y., Arballo J. K. American Geophysical Union, Washington, D.C. 249-290.

78. Prlss G. W., Jung M. J. (1978). Travelling atmospheric disturbances as a possible explanation for daytime positive storm effects of moderate duration at middle latitudes. J. Atmos. Terr. Phys. 40(12). 1351-1354. DOI: 10.1016/0021-9169(78)90088-0
https://doi.org/10.1016/0021-9169(78)90088-0

79. Qian L., Wang W., Burns A. G., Chamberlin P. C., Solomon S. C. (2020). Responses of the thermosphere and ionosphere system to concurrent solar flares and geomagnetic storms. J. Geophys. Res.: Space Phys. 125(3). e2019JA027431.
https://doi.org/10.1029/2019JA027431

80. Ray S., Roy B., Paul K. S., Goswami S., Oikonomou C., Haralambous H., Chandel B., Paul A. (2017). Study of the effect of 17-18 March 2015 geomagnetic storm on the Indian longitudes using GPS and C/NOFS. J. Geophys. Res. 122(2). 2551-2563. DOI: 10.1002/2016JA023127
https://doi.org/10.1002/2016JA023127

81. Riabova S. A., Spivak A. A. (2021). Variations of electrical characteristics of the surface atmosphere during magnetic storms. Doklady Earth Sciences. 497(1). 246- 251. DOI: 10.1134/S1028334X21030090
https://doi.org/10.1134/S1028334X21030090

82. Rout D., Pandey K., Chakrabarty D., Sekar R., Lu X. (2019). Significant electric field perturbations in low latitude ionosphere due to the passage of two consecutive ICMEs during 6-8 September 2017. J. Geophys. Res.: Space Phys. 124(11). 9494-9510. DOI: 10.1029/2019JA027133
https://doi.org/10.1029/2019JA027133

83. Rubtsov A. V., Maletckii B. M., Danilchuk E. I., Smotrova E. E., Shelkov A. D., Yasyukevich A. S. (2020). Ionospheric disturbances over eastern Siberia during April 12-15, 2016 geomagnetic storms. Sol.-Terr. Phys. 6(1). 60-68.
https://doi.org/10.12737/stp-61202007

84. entrk E. (2020). Investigation of global ionospheric response of the severe geomagnetic storm on June 22-23, 2015 by GNSS-based TEC observations. Astrophys. Space Sci. 365(7). 110. DOI: 10.1007/s10509-020-03828-z
https://doi.org/10.1007/s10509-020-03828-z

85. Shah M., Abbas A., Ehsan M., Calabia A., Adhikari B., Tariq M. A., Ahmed J., Oliveira-Junior J. F. D., Yan J., Melgarejo-Morales A., Jamjareegulgarn P. (2021). Ionospheric-Thermospheric responses in South America to the August 2018 geomagnetic storm based on multiple observations. IEEE J. Selected Topics in Appl. Earth Observ. and Remote Sensing. DOI: 10.1109/JSTARS.2021.3134495
https://doi.org/10.1109/JSTARS.2021.3134495

86. Shpynev B. G., Zolotukhina N. A., Polekh N. M., Ratovsky K. G., Chernigovskaya M. A., Belinskaya A. Y., Stepanov A. E., Bychkov V. V., Grigorieva S. A., Panchen¬ko V. A., Korenkova N. A., Mielich J. (2018). The ionosphere response to severe geomagnetic storm in March 2015 on the base of the data from Eurasian high-middle latitudes ionosonde chain. J. Atmos. Solar-Terr. Phys. 180. 93-105.
https://doi.org/10.1016/j.jastp.2017.10.014

87. Shreedevi P. R., Choudhary R. K., Thampi Smitha V., Yadav Sneha, Pant T. K., Yu Yiqun, McGranaghan Ryan, Thomas Evan G., Bhardwaj Anil, Sinha A. K. (2020). Geomagnetic storm-induced plasma density enhancements in the southern polar ionospheric region: A comparative study using St. Patrick's Day storms of 2013 and 2015. Space Weather. 18(8). e2019SW002383. DOI: 10.1029/2019SW002383
https://doi.org/10.1029/2019SW002383

88. Spogli L., Sabbagh D., Regi M., Cesaroni C., Perrone L., Alfonsi L., Mauro D. Di, Lepidi S., Campuzano S. A., Marchetti D., Santis A. De., Malagnini A., Scotto C., Cianchini G., Shen X., Piscini A., Ippolito A. (2021). Ionospheric Response Over Brazil to the August 2018 Geomagnetic Storm as Probed by CSES-01 and Swarm Satellites and by Local Ground-Based Observations. J. Geophys. Res. 126(2). e2020JA028368. DOI: 10.1029/2020JA028368
https://doi.org/10.1029/2020JA028368

89. Sun W.-J., Ning B.-Q., Zhao B.-Q., Li G.-Z., Hu L.-H., Chang S.-M. (2017). Analysis of ionospheric features in middle and low latitude region of China during the geomagnetic storm in March 2015. Acta Geophysica Sinica. 60(1). 1-10.

90. Tulasi Ram S., Nilam B., Balan N., Zhang Q., Shiokawa K., Chakrabarty D., Xing Z., Venkatesh K., Veenadhari B., Yoshikawa A. (2019). Three different episodes of prompt equatorial electric field perturbations under steady southward IMF Bz during St. Patrick's Day storm. J. Geophys. Res.: Space Phys. 124(12). 10428-10443. DOI: 10.1029/2019JA027069
https://doi.org/10.1029/2019JA027069

91. Uryadov V. P., Vybornov F. I., Pershin A. V. (2019). Features of the HF signal propagation on oblique sounding paths during solar and magnetic activity in September 2017. Radiophys. Quantum Electr. 62(2). 85-98.
https://doi.org/10.1007/s11141-019-09956-z

92. Venkatesh K., Tulasi Ram S., Fagundes P. R., Seemala G. K., Batista I. S. (2017). Electrodynamic disturbances in the Brazilian equatorial and low-latitude ionosphere on St. Patrick's Day storm of 17 March 2015. J. Geophys. Res. 122(4). 4553-4570. DOI: 10.1002/2017JA024009
https://doi.org/10.1002/2017JA024009

93. Verkhoglyadova O. P., Komjathy A., Mannucci A. J., Mlynczak M. G., Hunt L. A., Paxton L. J. (2017). Revisiting ionosphere-thermosphere responses to solar wind driving in superstorms of November 2003 and 2004. J. Geophys. Res. 122(10). 10,824-10,850. DOI: 10.1002/2017JA024542
https://doi.org/10.1002/2017JA024542

94. Vijaya Lekshmi D., Balan N., Tulasi Ram S., Liu J. Y. (2011). Statistics of geomagnetic storms and ionospheric storms at low and mid latitudes in two solar cycles. J. Geophys. Res. 116(A11). A11328. DOI: 10.1029/2011JA017042
https://doi.org/10.1029/2011JA017042

95. Walach M.-T., Grocott A., Milan S. E. (2021). Average ionospheric electric field morphologies during geomagnetic storm phases. J. Geophys. Res.: Space Phys. 126(4). e2020JA028512. DOI: 10.1029/2020JA028512
https://doi.org/10.1029/2020JA028512

96. Wang Z., Zou S., Liu L., Ren J., Aa E. (2021). Hemispheric asymmetries in the mid-latitude ionosphere during the September 7-8, 2017 storm: Multi-instrument observations. J. Geophys. Res. 126(4). e2020JA028829. DOI: 10.1029/2020JA028829
https://doi.org/10.1029/2020JA028829

97. Wen D., Mei D. (2020). Ionospheric TEC disturbances over China during the strong geomagnetic storm in September 2017. Adv. Space Res. 65(11). 2529-2539.
https://doi.org/10.1016/j.asr.2020.03.002

98. Willis D. M., Stevens P. R., Crothers S. R. (1997). Statistics of the largest geomagnetic storms per solar cycle (1844 - 1993). Ann. Geophys. 15(6). 719-728.
https://doi.org/10.1007/s00585-997-0719-5

99. Wu H., Lu X., Lu G., Chu X., Wang W., Yu Z., Kilcommons L. M., Knipp D. J., Wang B., Nishimura Y. (2020). Importance of regional-scale auroral precipitation and electrical field variability to the storm-time thermospheric temperature enhancement and inversion layer (TTEIL) in the Antarctic E Region. J. Geophys. Res.: Space Phys. 125(9). e2020JA028224. DOI: 10.1029/2020JA028224
https://doi.org/10.1029/2020JA028224

100. Xu Z., Hartinger M., Clauer C., Peek T., Behlke R. (2017). A comparison of the ground magnetic responses during the 2013 and 2015 St Patrick's Day geomagnetic storms. J. Geophys. Res. 122(4). 4023-4036. DOI: 10.1002/2016JA023338
https://doi.org/10.1002/2016JA023338

101. Younas W., Amory-Mazaudier C., Khan M., Fleury R. (2020). Ionospheric and magnetic signatures of a space weather event on 25-29 August 2018: CME and HSSWs. J. Geophys. Res. 125(8). e2020JA027981. DOI: 10.1029/2020JA027981
https://doi.org/10.1029/2020JA027981

102. Zakharenkova I., Cherniak I., Krankowski A. (2019). Features of storm-induced ionospheric irregularities from ground-based and spaceborne GPS observations during the 2015 St. Patrick's Day storm. J. Geophys. Res. 124(12). 10728-10748.
https://doi.org/10.1029/2019JA026782

103. Zhang S.-R., Erickson P. J., Zhang Y., Wang W., Huang C., Coster A. J., Holt J. M., Foster J. F., Sulzer M., Kerr R. (2017). Observations of ion-neutral coupling associated with strong electrodynamic disturbances during the 2015 St. Patrick's Day storm. J. Geophys. Res. 122(1). 1314-1337. DOI: 10.1002/2016JA023307
https://doi.org/10.1002/2016JA023307

104. Zolotukhina N., Polekh N., Kurkin V., Rogov D., Romanova E., Chelpanov M. (2017). Ionospheric effects of St. Patrick's storm over Asian Russia: 17-19 March 2015. J. Geophys. Res. 122(2). 2484-2504. DOI: 10.1002/2016JA023180
https://doi.org/10.1002/2016JA023180