Compact galaxies with active star formation from the SDSS data release 16: star formation rates based on the luminosities of forbidden emission lines in the optical range

Izotova, IY, Izotov, YI
Kinemat. fiz. nebesnyh tel (Online) 2023, 39(1):37-48
https://doi.org/10.15407/kfnt2023.01.037
Start Page: Extragalactic Astronomy
Language: Ukrainian
Abstract: 

We obtained expressions for star formation rates in local compact star-forming galaxies from the SDSS Data Release 16 using luminosities in forbidden emission lines [O II] 372.7 nm, [Ne III] 386.8 nm, [O III] 495.9 nm, [O III] 500.7 nm and their combinations. For this purpose the star formation rates derived from forbidden lines are assumed to be equal to those derived from the Hβ emission line. The reason for such approach is that the observations of Hβ emission are not always possible. For example, this line appears outside the spectrum in the optical range in galaxies with redshifts z > 1. [O II] 372.7 nm, [Ne III] 386.8 nm emission lines and their combination can be used in this case to derive star formation rates. On the other hand, there is a large number of studies of very faint objects with the use of the low-resolution spectra, in which Hβ emission line is blended with stronger [O III] 495.9 nm, [O III] 500.7 nm emission lines. In these cases [O III] lines and their combination can be used for the determination of the star formation rate. Obtained expressions can be applied for compact star-forming galaxies in a broad range of redshifts.

Keywords: dwarf star-forming galaxies, galaxy H II regions, infrared emission, interstellar dust
References: 

1. Ade P. A. R., Aghanim N., Armitage-Caplan C., et al. (2014) Planck 2013 results. XVI. Cosmological parameters. Astron. and Astrophys. 571. 16. 66.

2. Ahumada R., Allende Prieto C., Almeida A., et al. (2020) The 16th data release of the Sloan Digital Sky Surveys: First release from the APOGEE-2 southern survey and full release of eBOSS spectra. Astrophys. J. Suppl. Ser. 249. 3. 21.
https://doi.org/10.3847/1538-4365/ab929e

3. Battisti A. J., Calzetti D., Johnson B. D., Elbaz D. (2015) Continuous mid-infrared star formation rate indicators: Diagnostics for 0 https://doi.org/10.1088/0004-637X/800/2/143

4. Calzetti D., Wu S.-Y., Hong S., et al. (2010) The calibration of monochromatic far-infra¬red star formation rate indicators. Astrophys. J. 714. 1256-1279.
https://doi.org/10.1088/0004-637X/714/2/1256

5. Cardamone C., Schawinski K., Sarzi M., et al. (2009) Galaxy Zoo Green Peas: dis¬covery of a class of compact extremely star-forming galaxies. Mon. Notic. Roy. Astron. Soc. 399. 1191-1205.
https://doi.org/10.1111/j.1365-2966.2009.15383.x

6. Hao C.-N., Kennicutt R. C., Johnson B. D., Calzetti D., Dale D. A., Moustakas J. (2011) Dust-corrected star formation rates of galaxies. II. Combinations of ultraviolet and infrared tracers. Astrophys. J. 741. 124. 22.
https://doi.org/10.1088/0004-637X/741/2/124

7. Iglesias-Pramo J., Buat V., Takeuchi T. T., et al. (2006) Star formation in the neaby universe: the ultraviolet and infrared point of view. Astrophys. J. Suppl. Ser. 164. 38-51.

8. Izotova I. Y., Izotov Y. I. (2018) Star-formation rate in compact star-forming galaxies. Astrophys. Space. Sci. 363. 47. 9.
https://doi.org/10.1007/s10509-018-3264-7

9. Izotova I. Y., Izotov Y. I. (2019) Properties of star-forming galaxies in the mid-infrared range from the data obtained with the WISE space telescope. Kinematics and Phys. Celestial Bodies. 35(6). 253-260.
https://doi.org/10.3103/S0884591319060035

10. Izotova I. Y., Izotov Y. I. (2021) Сompact galaxies with active star formation from SDSS DR14: star formation rates derived from combinations of luminosities in different wavelength ranges. Kinematics and Phys. Celestial Bodies. 37(2). 53-63.
https://doi.org/10.3103/S0884591321020033

11. Izotov Y. I., Guseva N. G., Fricke K. J., Henkel C. (2011) Star-forming galaxies with hot dust emission in the Sloan Digital Sky Survey discovered by the Wide-field Infrared Survey Explorer (WISE). Astron. and Astrophys. 536. L7. 4.
https://doi.org/10.1051/0004-6361/201118402

12. Izotov Y. I., Guseva N. G., Fricke K. J., Henkel C. (2014) Multi-wavelength study of 14 000 star-forming galaxies from the Sloan Digital Sky Survey. Astron. and Astrophys. 561. A33. 30.
https://doi.org/10.1051/0004-6361/201322338

13. Izotov Y. I., Guseva N. G., Fricke K. J., Henkel C. (2016) The bursting nature of star formation in compact star-forming galaxies from the Sloan Digital Sky Survey. Mon. Notic. Roy. Astron. Soc. 462 (4). 4427-4434.
https://doi.org/10.1093/mnras/stw1973

14. Izotov Y. I., Guseva N. G., Fricke K. J., Henkel C., Schaerer D. (2017) The efficiency of ionizing photon production and the radiation energy balance in compact star-forming galaxies. Mon. Notic. Roy. Astron. Soc. 467. 4118-4130.
https://doi.org/10.1093/mnras/stx347

15. Izotov Y. I., Guseva N. G., Fricke K. J., Henkel C., Schaerer D., Thuan T. X. (2021) Low-redshift compact star-forming galaxies as analogues of high-redshift star-for¬ming galaxies. Astron. and Astrophys. 646. 138. 19.
https://doi.org/10.1051/0004-6361/202039772

16. Izotov Y. I., Guseva N. G., Thuan T. X. (2011) Green Pea Galaxies and Cohorts: Luminous compact emission-line galaxies in the Sloan Digital Sky Survey. Astrophys. J. 728. 161, 16.
https://doi.org/10.1088/0004-637X/728/2/161

17. Kennicutt R. C., Jr. (1998) Star formation in galaxies along the Hubble Sequence. Annu. Rev. Astron. and Astrophys. 36. 189-231.
https://doi.org/10.1146/annurev.astro.36.1.189

18. Kennicutt R. C., Hao C.-N., Calzetti D., Moustakas J., Dale D. A., Bendo G., Engelbracht C. W., Johnson B. D., Lee J. C. (2009) Dust-corrected star formation rates of galaxies. I. Combinations of H and infrared tracers. Astrophys. J. 703. 1672-1695.
https://doi.org/10.1088/0004-637X/703/2/1672

19. Kewley L., Geller M., Jansen R. (2004) O II as star formationrate indicator. Astron. J. 127. 2002-2030.
https://doi.org/10.1086/382723

20. Murphy E. J., Condon J. J., Schinnerer E., et al. (2011) Calibrating extinction-free formation rate diagnistics with 33 GHz free-free emission in NGC6946. Astrophys. J. 737. 67. 16.
https://doi.org/10.1088/0004-637X/737/2/67

21. Parnovsky S. L., Izotova I. Y., Izotov Y. I. (2013) H and UV luminosities and star formation rates of large sample of luminous compact galaxies. Astrophys. Space. Sci. 343. 361- 376.
https://doi.org/10.1007/s10509-012-1253-9

22. Parnovsky S. L., Izotova I. Y. (2015) Radio emission at 1.4 GHz from luminous compact galaxies. Astron. Nachr. 336. 276-283.
https://doi.org/10.1002/asna.201412163

23. Rieke G. H., Alonso-Herrero A., Weiner B. J., Prez-Gonzlez P. G., Blaylock M., Donley J. L., Marcilla D. (2009) Determining star formation rates for infrared galaxies. Astrophys. J. 692. 556-573.
https://doi.org/10.1088/0004-637X/692/1/556

24. Rosa-Gonzlez D., Terlevich E., Terlevich R. (2002) An empirical calibration of the star formation rate estimators. Mon. Notic. Roy. Astron. Soc. 332. 283-295.
https://doi.org/10.1046/j.1365-8711.2002.05285.x

25. Salpeter E. E. (1955) The luminosity function and stellar evolution. Astrophys. J. 121. 161-167.
https://doi.org/10.1086/145971

26. Schechter P. (1976) An analytic expression for the luminosity function of galaxies. Astrophys. J. 203. 297.
https://doi.org/10.1086/154079

27. Treyer M., Schimidovich D., Johnson B. D., O'Dowd M., Martin C. D., Wyder T., Charlot S., Heckman T., Martins L., Seibert M., van der Hulst J. M. (2010) Mid-infrared spectral indicators of star formation and active galactic nucleus activity in normal galaxies. Astrophys. J. 719. 1191-1211.
https://doi.org/10.1088/0004-637X/719/2/1191

28. Vanderhoof B. N., Faisst A. L., Shen L., Lemaux B. C., et al. (2022) The ALPINE-ALMA [CII] survey: Investigation of 10 galaxies at z ~ 4.5 with [O II] and [CII] line emission - ISM properties and [OII]-SFR relation. Mon. Notic. Roy. Astron. Soc. 511. 1303-1316.
https://doi.org/10.1093/mnras/stac071

29. Wu H., Cao C., Hao C.-N., Liu F.-S., Wang J.-L., Xia X.-Y., Deng Z.-G., Young C. K.-S. (2005) PAH and mid-infrared luminosities as measured of star formation rate in SPITZER First Look Survey galaxies. Astrophys. J. Lett. 632. L79-L82.
https://doi.org/10.1086/497961

30. Yan R., Newman J., Faber S. M., Konidaris N., Koo D., Davis M. (2006) On the origin of [OII] emission in red-sequence and poststarburst galaxies. Astrophys. J. 648. 281-298.
https://doi.org/10.1086/505629

31. Zhang F., Li L., Kang X., Zhuang Y., Hanet Z. (2013) Uncertainties in the calibrations of star formation rate. Mon. Notic. Roy. Astron. Soc. 433. 1039-1053.
https://doi.org/10.1093/mnras/stt785

32. Zhu Y.-N., Wu H., Cao C., Li H.-N. (2008) Correlations between mid-infrared, far-infrared, H, and FUV luminosities for SPITZER SWIRE field galaxies. Astrophys. J. 686. 155-171.
https://doi.org/10.1086/591121