Compact galaxies with active star formation from the SDSS data release 16: star formation rates based on the luminosities of forbidden emission lines in the optical range
Izotova, IY, Izotov, YI |
Kinemat. fiz. nebesnyh tel (Online) 2023, 39(1):37-48 |
https://doi.org/10.15407/kfnt2023.01.037 |
Start Page: Extragalactic Astronomy |
Язык: Ukrainian |
Аннотация: We obtained expressions for star formation rates in local compact star-forming galaxies from the SDSS Data Release 16 using luminosities in forbidden emission lines [O II] 372.7 nm, [Ne III] 386.8 nm, [O III] 495.9 nm, [O III] 500.7 nm and their combinations. For this purpose the star formation rates derived from forbidden lines are assumed to be equal to those derived from the Hβ emission line. The reason for such approach is that the observations of Hβ emission are not always possible. For example, this line appears outside the spectrum in the optical range in galaxies with redshifts z > 1. [O II] 372.7 nm, [Ne III] 386.8 nm emission lines and their combination can be used in this case to derive star formation rates. On the other hand, there is a large number of studies of very faint objects with the use of the low-resolution spectra, in which Hβ emission line is blended with stronger [O III] 495.9 nm, [O III] 500.7 nm emission lines. In these cases [O III] lines and their combination can be used for the determination of the star formation rate. Obtained expressions can be applied for compact star-forming galaxies in a broad range of redshifts. |
Ключевые слова: dwarf star-forming galaxies, galaxy H II regions, infrared emission, interstellar dust |
1. Ade P. A. R., Aghanim N., Armitage-Caplan C., et al. (2014) Planck 2013 results. XVI. Cosmological parameters. Astron. and Astrophys. 571. 16. 66.
2. Ahumada R., Allende Prieto C., Almeida A., et al. (2020) The 16th data release of the Sloan Digital Sky Surveys: First release from the APOGEE-2 southern survey and full release of eBOSS spectra. Astrophys. J. Suppl. Ser. 249. 3. 21.
https://doi.org/10.3847/1538-4365/ab929e
3. Battisti A. J., Calzetti D., Johnson B. D., Elbaz D. (2015) Continuous mid-infrared star formation rate indicators: Diagnostics for 0 https://doi.org/10.1088/0004-637X/800/2/143
4. Calzetti D., Wu S.-Y., Hong S., et al. (2010) The calibration of monochromatic far-infra¬red star formation rate indicators. Astrophys. J. 714. 1256-1279.
https://doi.org/10.1088/0004-637X/714/2/1256
5. Cardamone C., Schawinski K., Sarzi M., et al. (2009) Galaxy Zoo Green Peas: dis¬covery of a class of compact extremely star-forming galaxies. Mon. Notic. Roy. Astron. Soc. 399. 1191-1205.
https://doi.org/10.1111/j.1365-2966.2009.15383.x
6. Hao C.-N., Kennicutt R. C., Johnson B. D., Calzetti D., Dale D. A., Moustakas J. (2011) Dust-corrected star formation rates of galaxies. II. Combinations of ultraviolet and infrared tracers. Astrophys. J. 741. 124. 22.
https://doi.org/10.1088/0004-637X/741/2/124
7. Iglesias-Pramo J., Buat V., Takeuchi T. T., et al. (2006) Star formation in the neaby universe: the ultraviolet and infrared point of view. Astrophys. J. Suppl. Ser. 164. 38-51.
8. Izotova I. Y., Izotov Y. I. (2018) Star-formation rate in compact star-forming galaxies. Astrophys. Space. Sci. 363. 47. 9.
https://doi.org/10.1007/s10509-018-3264-7
9. Izotova I. Y., Izotov Y. I. (2019) Properties of star-forming galaxies in the mid-infrared range from the data obtained with the WISE space telescope. Kinematics and Phys. Celestial Bodies. 35(6). 253-260.
https://doi.org/10.3103/S0884591319060035
10. Izotova I. Y., Izotov Y. I. (2021) Сompact galaxies with active star formation from SDSS DR14: star formation rates derived from combinations of luminosities in different wavelength ranges. Kinematics and Phys. Celestial Bodies. 37(2). 53-63.
https://doi.org/10.3103/S0884591321020033
11. Izotov Y. I., Guseva N. G., Fricke K. J., Henkel C. (2011) Star-forming galaxies with hot dust emission in the Sloan Digital Sky Survey discovered by the Wide-field Infrared Survey Explorer (WISE). Astron. and Astrophys. 536. L7. 4.
https://doi.org/10.1051/0004-6361/201118402
12. Izotov Y. I., Guseva N. G., Fricke K. J., Henkel C. (2014) Multi-wavelength study of 14 000 star-forming galaxies from the Sloan Digital Sky Survey. Astron. and Astrophys. 561. A33. 30.
https://doi.org/10.1051/0004-6361/201322338
13. Izotov Y. I., Guseva N. G., Fricke K. J., Henkel C. (2016) The bursting nature of star formation in compact star-forming galaxies from the Sloan Digital Sky Survey. Mon. Notic. Roy. Astron. Soc. 462 (4). 4427-4434.
https://doi.org/10.1093/mnras/stw1973
14. Izotov Y. I., Guseva N. G., Fricke K. J., Henkel C., Schaerer D. (2017) The efficiency of ionizing photon production and the radiation energy balance in compact star-forming galaxies. Mon. Notic. Roy. Astron. Soc. 467. 4118-4130.
https://doi.org/10.1093/mnras/stx347
15. Izotov Y. I., Guseva N. G., Fricke K. J., Henkel C., Schaerer D., Thuan T. X. (2021) Low-redshift compact star-forming galaxies as analogues of high-redshift star-for¬ming galaxies. Astron. and Astrophys. 646. 138. 19.
https://doi.org/10.1051/0004-6361/202039772
16. Izotov Y. I., Guseva N. G., Thuan T. X. (2011) Green Pea Galaxies and Cohorts: Luminous compact emission-line galaxies in the Sloan Digital Sky Survey. Astrophys. J. 728. 161, 16.
https://doi.org/10.1088/0004-637X/728/2/161
17. Kennicutt R. C., Jr. (1998) Star formation in galaxies along the Hubble Sequence. Annu. Rev. Astron. and Astrophys. 36. 189-231.
https://doi.org/10.1146/annurev.astro.36.1.189
18. Kennicutt R. C., Hao C.-N., Calzetti D., Moustakas J., Dale D. A., Bendo G., Engelbracht C. W., Johnson B. D., Lee J. C. (2009) Dust-corrected star formation rates of galaxies. I. Combinations of H and infrared tracers. Astrophys. J. 703. 1672-1695.
https://doi.org/10.1088/0004-637X/703/2/1672
19. Kewley L., Geller M., Jansen R. (2004) O II as star formationrate indicator. Astron. J. 127. 2002-2030.
https://doi.org/10.1086/382723
20. Murphy E. J., Condon J. J., Schinnerer E., et al. (2011) Calibrating extinction-free formation rate diagnistics with 33 GHz free-free emission in NGC6946. Astrophys. J. 737. 67. 16.
https://doi.org/10.1088/0004-637X/737/2/67
21. Parnovsky S. L., Izotova I. Y., Izotov Y. I. (2013) H and UV luminosities and star formation rates of large sample of luminous compact galaxies. Astrophys. Space. Sci. 343. 361- 376.
https://doi.org/10.1007/s10509-012-1253-9
22. Parnovsky S. L., Izotova I. Y. (2015) Radio emission at 1.4 GHz from luminous compact galaxies. Astron. Nachr. 336. 276-283.
https://doi.org/10.1002/asna.201412163
23. Rieke G. H., Alonso-Herrero A., Weiner B. J., Prez-Gonzlez P. G., Blaylock M., Donley J. L., Marcilla D. (2009) Determining star formation rates for infrared galaxies. Astrophys. J. 692. 556-573.
https://doi.org/10.1088/0004-637X/692/1/556
24. Rosa-Gonzlez D., Terlevich E., Terlevich R. (2002) An empirical calibration of the star formation rate estimators. Mon. Notic. Roy. Astron. Soc. 332. 283-295.
https://doi.org/10.1046/j.1365-8711.2002.05285.x
25. Salpeter E. E. (1955) The luminosity function and stellar evolution. Astrophys. J. 121. 161-167.
https://doi.org/10.1086/145971
26. Schechter P. (1976) An analytic expression for the luminosity function of galaxies. Astrophys. J. 203. 297.
https://doi.org/10.1086/154079
27. Treyer M., Schimidovich D., Johnson B. D., O'Dowd M., Martin C. D., Wyder T., Charlot S., Heckman T., Martins L., Seibert M., van der Hulst J. M. (2010) Mid-infrared spectral indicators of star formation and active galactic nucleus activity in normal galaxies. Astrophys. J. 719. 1191-1211.
https://doi.org/10.1088/0004-637X/719/2/1191
28. Vanderhoof B. N., Faisst A. L., Shen L., Lemaux B. C., et al. (2022) The ALPINE-ALMA [CII] survey: Investigation of 10 galaxies at z ~ 4.5 with [O II] and [CII] line emission - ISM properties and [OII]-SFR relation. Mon. Notic. Roy. Astron. Soc. 511. 1303-1316.
https://doi.org/10.1093/mnras/stac071
29. Wu H., Cao C., Hao C.-N., Liu F.-S., Wang J.-L., Xia X.-Y., Deng Z.-G., Young C. K.-S. (2005) PAH and mid-infrared luminosities as measured of star formation rate in SPITZER First Look Survey galaxies. Astrophys. J. Lett. 632. L79-L82.
https://doi.org/10.1086/497961
30. Yan R., Newman J., Faber S. M., Konidaris N., Koo D., Davis M. (2006) On the origin of [OII] emission in red-sequence and poststarburst galaxies. Astrophys. J. 648. 281-298.
https://doi.org/10.1086/505629
31. Zhang F., Li L., Kang X., Zhuang Y., Hanet Z. (2013) Uncertainties in the calibrations of star formation rate. Mon. Notic. Roy. Astron. Soc. 433. 1039-1053.
https://doi.org/10.1093/mnras/stt785
32. Zhu Y.-N., Wu H., Cao C., Li H.-N. (2008) Correlations between mid-infrared, far-infrared, H, and FUV luminosities for SPITZER SWIRE field galaxies. Astrophys. J. 686. 155-171.
https://doi.org/10.1086/591121