Modelling ionospheric phenomena and assessing the performance of IRI-Plas2017 during different phases of solar cycle 24

Heading: 
Kayode, YO, Ikuemonisan, FE, Garba, L, Okoh, D, Onori, EO, Ometan, OO, Alomaja, AJ, Ajose, AS
Kinemat. fiz. nebesnyh tel (Online) 2025, 41(2):47-84
https://doi.org/10.15407/kfnt2025.02.047
Language: Ukrainian
Abstract: 

Ionospheric modelling is one of the most powerful tools for studying the behavior of the ionosphere. The aim of this paper is to assess the performance of IRI-Plas2017 in five different longitudinal sectors during different phases of solar cycle 24 (2011-2017). An hourly mean value of Total Electron Content (TEC) was used to study the diurnal and seasonal variations in TEC. An annual error plot profiled on monthly basis was used to study the difference between the measured and predicted TEC values. The annual TEC deviations were used to investigate the relationship between TEC derived from Global Positioning System (GPS) and IRI-Plas2017 model. Our results showed that the highest peak value of TEC was recorded as ~89 TECU (06:00 UT) in the Asian sector (BAKO) while the lowest peak value of ~22 TECU (08:00 UT) was recorded in the Australian sector (DAV1) in the ascending and descending phase during the March equinox respectively. Semi-annual variation is a prevailing factor in all the solar cycle phases in the Africa and Asian sectors except during the descending and maximum phase where anomalies were recorded. Semi-annual anomalies were also prominent in all the solar cycle phases in the Australian, American, and Asian sectors. Winter anomaly was predominant in all the phases of solar cycle in the American, Asian, and European sectors. However, the IRI-Plas2017 model was not able to appropriately reproduce the two prominent phenomena (Semi-annual Variations and Winter Anomalies) observed in all the five longitudinal sectors.

Keywords: IRI-Plas2017, mean absolute error, root mean square error, total electron content
References: 

1. Abdu E. O., Souza J. R., Batista I. S., De Medeiros R. T. (2015). Equatorial spread F occurrence statistics in the American sector during solar minimum and post-sunset vertical drift. J. Atmos. and Solar-Terr. Phys., 55 (1), 7-12.
https://doi:10.1016/j.jastp.2014.11.016

2. Adebiyi S. J., Ikubanni S. O., Adebesin B. O., Adeniyi J. O., Joshua B. W., Adimula I. A., Oladipo O. A.,Olawepo A. O., Adekoya B. J. (2019). Storm time IRI-Plas model forecast for an African equatorial station. Heliyon, 5 (6). e01844.
https://doi.org/10.1016/j.heliyon.2019.e01844

3. Aggarwal M., Joshi H. P., Iyer K. N., Kwak Y. S., Lee J. J., Chandra H., Cho K. S. (2012). Day-to-day variability of equatorial anomaly in GPS-TEC during low solar activity period. Adv. in Space Res., 49 (12), 1709-1720.
https://doi.org/10.1016/j.asr.2012.03.005

4. Aghogho Ogwala, Feyisara Fiyintoluwa Akinbuli, Sampad Kumar Panda, Punyawi Jamjareegulgarn, Md Irfanul Haque Siddiqui, Yusuf Olanrewaju Kayode, Intesaaf Ashraf, Emmanuel Olufemi Somoye. (2024). On the Variations in Equatorial and Low-Latitude GPS-TEC and Assessment of NeQuick-2, IRI-2016 and IRI-2020 Models in the African Longitude during Solar Cycle 24-25. Adv. in Space Res.
https://doi.org/10.1016/j.asr.2024.05.031

5. Ajose Anthony Segara, Kayode Yusuf Olanrewaju, Alomaja Adegoke Jude. (2024). Assessing the Solar Activity and Geomagnetic Disturbance During Minimum Phase Of Solar Cycle 24 Across the Globe. Int. J. Res. and Innovation in Appl. Sci. VIII (XII) ISSN 2454-6194.
https://doi.org/10.51584/IJRIAS.2023.81219

6. Akala A. O., Oyeyemi E. O., Amaechi P. O., Radicella S. M., Nava B., Amory- Mazaudier C. (2020). Longitudinal responses of the equatorial/low latitude iono¬sphere over the oceanic regions to geomagnetic storms of May and September, 2017. J. Geophys. Res.: Space Phys. doi:10.1029/2020ja027963.
https://doi.org/10.1029/2020JA027963

7. Akala A. O., Adewusi E. O. (2020). Quiet-time and Storm-time Variations of the African Equatorial and Low Latitude Ionosphere during 2009-2015. Adv. in Space Res. 66 (6), 1441-1459. doi:10.1016/j.asr.2020.05.038.
https://doi.org/10.1016/j.asr.2020.05.038

8. Balan N., Liu L., Le H. (2018). A brief review of equatorial ionization anomaly and ionospheric irregularities. Earth and Planet. Phys., 2 (4), 1-19.
https://doi.org/10.26464/epp2018025

9. Bett P. E., Thornton H. E. (2016). The climatological relationships between wind and solar energy supply in Britain. Renewable Energy, 87, 96-110.
https://doi.org/10.1016/j.renene.2015.10.006

10. Bilitza D., Brown S. A., Wang M. Y., Souza J. R., Roddy P. (2017). Measurements and IRI model predictions during the recent solar cycle minimum and rising phase. Adv. in Space Res., 59 (6), 1671-1687.
https://doi.org/10.1016/j.asr.2016.11.015

11. Bilitza D., Pezzopane M., Truhlik V., Altadill D., Reinisch B. W., Pignalberi A. (2022). The International Reference Ionosphere model: A review and description of an ionospheric benchmark. Revs of Geophys., 60 (4), e2022RG000792.
https://doi.org/10.1029/2022RG000792

12. Borduas N., Donahue N. M. (2018). The natural atmosphere. Green Chemistry. 131-150. Elsevier.
https://doi.org/10.1016/B978-0-12-809270-5.00006-6

13. Bouya Z., Boukhtoua H. (2021). Assessment of IRI-Plas2017 and NeQuick2 models over equatorial regions: A comparative study with GPS TEC data. J. Atmos. and Solar-Terr. Phys., 216, 105630.
https://doi.org/10.1016/j.jastp.2021.105630

14. Chai T., Draxler R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)? Arguments against avoiding RMSE in the literature. Geosci. Model Develop., 7 (3), 1247-1250.
https://doi.org/10.5194/gmd-7-1247-2014

15. Crowley G., Azeem I. (2018). Extreme ionospheric storms and their effects on GPS systems. In Extreme events in geospace. 555-586. Elsevier.
https://doi.org/10.1016/B978-0-12-812700-1.00023-6

16. Dergachev V. A., Vasiliev S. S., Raspopov O. M., Jungner H. (2012). Impact of the geomagnetic field and solar radiation on climate change. Geomagnet. and Aeronomy, 52, 959-976.
https://doi.org/10.1134/S0016793212080063

17. Endeshaw L., Seyoum A. (2023). Performance evaluation of IRI-Plas 2017 model with ionosonde data measurements of ionospheric parameters. Heliyon, 9 (11). e21911.
https://doi.org/10.1016/j.heliyon.2023.e21911

18. Eugene Onori, Abiola Ogungbe, Aghogho Ogwala, Yusuf Kayode, Emmanuel Somoye, Razak Adeniji-Adele, Olorunfemi Fakunle. Seasonal Variation of the F2-Layer's Critical Frequency and Comparison with the IRI-2016 Model during Two Extremes of Solar Activity Phase of Solar Cycle 22. (2023). J. Res. and Rev. in Sci. 10 (1), June. 56-70.
https://doi.org/10.36108/jrrslasu/3202.01.0140

19. Georgieva K., Veretenenko S. (2023). Solar influences on the Earth's atmosphere: solved and unsolved questions. Front. in Astron. and Space Sci., 10, 1244402.
https://doi.org/10.3389/fspas.2023.1244402

20. Golubkov G. V., Manzhelii M. I., Berlin A. A., Lushnikov A. A. (2016). Fundamentals of radio-chemical physics of the Earth's atmosphere. Russian J. Phys. Chem. B, 10, 77-90.
https://doi.org/10.1134/S1990793116010024

21. Hajra R., Chakraborty S. K., Tsurutani B. T., DasGupta A., Echer E., Brum C. G., ... Sobral J. H. A. (2016). An empirical model of ionospheric total electron content (TEC) near the crest of the equatorial ionization anomaly (EIA). J. Space Weather and Space Climate, 6, A29. doi.org/10.1051/swsc/2016023
https://doi.org/10.1051/swsc/2016023

22. Harrison R. G., Aplin K. L., Rycroft M. J. (2010). Atmospheric electricity coupling between earthquake regions and the ionosphere. J. Atmos. and Solar-Terr. Phys., 72 (5-6), 376-381.
https://doi.org/10.1016/j.jastp.2009.12.004

23. Herv https://doi.org/10.3390/s20092486

24. Huba J. D., Schunk R. W., Khazanov G. V. (Eds). (2014). Modeling the ionosphere-thermosphere. John Wiley & Sons.
https://doi.org/10.1002/9781118704417

25. Jean de Dieu Nibigira, Ratnam D.V., Sivakrishna K. Performance Analysis of NeQuick-G, IRI-2016, IRI-Plas 2017 and AfriTEC Models over the African Region during the Geomagnetic Storm of March 2015 (2024). Geomagn. Aeron. 63 (Suppl 1), S83-S98.
https://doi.org/10.1134/S0016793223600601

26. Jenan R., Dammalage T. L., Kealy A. (2019). The influences of solar activities on TEC variations of equatorial ionosphere over Sri Lanka. Sun and Geosphere, 14 (2), 131-137.
https://doi.org/10.31401/SunGeo.2019.02.05

27. Kakad B., Kakad A., Ramesh D. S., Lakhina G. S. (2019). Diminishing activity of recent solar cycles (22-24) and their impact on geospace. J. Space Weather and Space Climate, 9, A1.
https://doi.org/10.1051/swsc/2018048

28. Karia S., Pathak K. N. (2011). Equatorial and low-latitude ionospheric response to solar activity: A review of TEC measurements and model challenges. Adv. in Space Res., 47 (6), 867-879.
https://doi.org/10.1016/j.asr.2010.09.020

29. Kayode Y. O., Okoh. D., Onori E. O., Ometan O. O., Adegbola R. B., Ogwala A., Somoye E. O., Adeniji-Adele R. A. (2024). Effects of local time on the variations of the total electron contents at an american and asian longitudes and their comparison with IRI-2016, IRI-Plas2017 and NeQuick-2 models during solar cycle 24. J. Atmos. and Solar-Terr. Phys. 260, 106271.
https://doi.org/10.1016/j.jastp.2024.106271

30. Kenneth Iluore, Jianyong Lu, Francisca Okeke, Kesyton Oyamenda Ozegin. (2022). Performance of NeQuick-2 and IRI-Plas 2017 models during solar maximum years in 2013-2014 over equatorial and low latitude regions. Universe. 2022, 8 (2), 125.
https://doi.org/10.3390/universe8020125

31. Klimenko M. V., Zhao B., Karpachev A. T., Klimenko V. V. (2012). Stratification of the low-latitude and near-equatorial F2 layer, topside ionization ledge, and F3 layer: What we know about this? A review. Int. J. Geophys., 2012 (1), 938057.
https://doi.org/10.1155/2012/938057

32. Kumar S., Priyadarshi S., Gopi Krishna S., Singh A. K. (2012). GPS-TEC variations during low solar activity period (2007-2009) at Indian low latitude stations. Astrophys. and Space Sci., 339, 165-178.
https://doi.org/10.1007/s10509-011-0973-6

33. Kumar S., Tan E. L., Razul S. G., See C. M. S., Siingh D. (2014). Validation of the IRI-2012 model with GPS-based ground observation over a low-latitude Singapore station. Earth, Planets and Space, 66 (1), 1-10.
https://doi.org/10.1186/1880-5981-66-17

34. Kutiev I., Tsagouri I., Perrone L., Pancheva D., Mukhtarov P., Mikhailov A., ... Torta J. M. (2013). Solar activity impact on the Earth's upper atmosphere. J. Space Weather and Space Climate, 3, A06.
https://doi.org/10.1051/swsc/2013028

35. Latovika J. (2006). Forcing of the ionosphere by waves from below. J. Atmos. and Solar-Terr. Phys., 68 (3-5), 479-497.
https://doi.org/10.1016/j.jastp.2005.01.018

36. Lee H. B., Jee G., Kim Y. H., Shim J. S. (2013). Characteristics of global plasmaspheric TEC in comparison with the ionosphere simultaneously observed by Jason-1 satellite. J. Geophys. Res.: Space Phys., 118 (2), 935-946.
https://doi.org/10.1002/jgra.50130

37. Liu J., Jia X., Zhu Y., Xu J., Fu J., Zhang R., He Y. (2022). Comparing GNSS TEC data from the African continent with IRI-2016, IRI-Plas, and NeQuick predictions. Adv. in Space Res., 69 (7), 2852-2864. https://doi.org/10.1016/j.asr.2022.01.008

38. Liu L., Wan W. (2020). Recent ionospheric investigations in China (2018-2019). Earth and Planet. Phys., 4 (3), 179-205.
https://doi.org/10.26464/epp2020028

39. Lockwood M., Owens M. J., Barnard L. A., Haines C., Scott C. J., McWilliams K. A., Coxon J. C. (2020). Semi-annual, annual and Universal Time variations in the magnetosphere and in geomagnetic activity: 1. Geomagnetic data. J. Space Weather and Space Climate, 10, 23.
https://doi.org/10.1051/swsc/2020023

40. Lomidze L., Knudsen D. J., Shepherd M., Huba J. D., Maute A. (2023). Equinoctial asymmetry in the upper ionosphere: Comparison of satellite observations and models. J. Geophys. Res.: Space Phys., 128 (5), e2022JA031123.
https://doi.org/10.1029/2022JA031123

41. Lukianova R., Mursula K. (2011). Changed relation between sunspot numbers, solar UV/EUV radiation and TSI during the declining phase of solar cycle 23. J. Atmos. and Solar-Terr. Phys., 73 (2-3), 235-240.
https://doi.org/10.1016/j.jastp.2010.04.002

42. Ma Z., Gong Y., Zhang S., Bao J., Yin S., Zhou Q. (2023). Seasonal variations in ion density, ion temperature, and migrating tides in the topside ionosphere revealed by ICON/IVM. Remote Sensing, 15 (21), 5205. https://doi.org/10.3390/rs15215205

43. Manoharan P. K. (2012). Three-dimensional evolution of solar wind during solar cycles 22-24. Astrophys. J., 751 (2), 128.
https://doi.org/10.1088/0004-637X/751/2/128

44. Mehmood M., Filjar R., Saleem S., Shah M., Ahmed A. (2021). TEC derived from local GPS network in Pakistan and comparison with IRI-2016 and IRI-PLAS 2017. Acta Geophys., 69 (1), 381-389.
https://doi.org/10.1007/s11600-021-00538-0

45. Mironova I. A., Aplin K. L., Arnold F., Bazilevskaya G. A., Harrison R. G., Krivolutsky A. A., ... Usoskin I. G. (2015). Energetic particle influence on the Earth's atmosphere. Space sci. revs, 194, 1-96.
https://doi.org/10.1007/s11214-015-0185-4

46. Mishev A. (2013). Short- and medium-term induced ionization in the Earth atmosphere by galactic and solar cosmic rays. Int. J. Atmos. Sci., 2013 (1), 184508.
https://doi.org/10.1155/2013/184508

47. Musur M. A., Beggan C. D. (2019). Seasonal and solar cycle variation of Schumann resonance intensity and frequency at Eskdalemuir observatory, UK. Sun and Geosphere, 14 (1), 81-86.
https://doi.org/10.31401/SunGeo.2019.01.11

48. Natali M. P., Meza A. (2011). Annual and semiannual variations of vertical total electron content during high solar activity based on GPS observations. Ann. Geophys. 29, No. 5, 865-873. URL:
https://doi.org/10.5194/angeo-29-865-2011

49. Ogwala A., Onori E. O., Kayode Y. O., Adele R. A., Somoye E. O. (2022). The Equatorial Ionospheric phenomena: A review of past studies, government interest and unsolved problems. Latin-Amer. J. Phys. Education, 16 (2), 3.

50. Ogwala A., Somoye E.O., Panda S.K., Ogundinmu O., Onori E.O., Sharma S.K., Okoh D., Oyedokun O.J. (2021). Total electron content at equatorial and low-, middle-and high-latitudes in the African longitude sector and its comparison with IRI-2016 and IRI-Plas2017 models. Adv. in Space Res. 68, 2160-2176.
https://doi.org/10.1016/j.asr.2020.07.013

51. Okoh D. I., Seemala G. K., Rabiu A. B., Uwamahoro J., Habarulema J. B., Aggarwal M. (2018). A Hybrid Regression-Neural Network (HR-NN) method for forecasting the solar activity. Space Weather, 16, 1424-1436.
https://doi.org/10.1029/2018SW001907

52. Oluwadare T. S., Thai C. N., Akala A. O. O., Heise S., Alizadeh M., Schuh H. (2019). Characterization of GPS-TEC over African equatorial ionization anomaly (EIA) region during 2009-2016. Adv. in Space Res., 63 (1), 282-301.
https://doi.org/10.1016/j.asr.2018.08.044

53. Olwendo O. J., Yamazaki Y., Cilliers P. J., Baki P., Doherty P. (2016). A study on the variability of ionospheric total electron content over the East African low-latitude region and storm time ionospheric variations. Radio Sci., 51 (9), 1503-1518.
https://doi.org/10.1002/2015RS005785

54. Oryema B., Jurua E., D'ujanga F. M., Ssebiyonga N. (2015). Investigation of TEC variations over the magnetic equatorial and equatorial anomaly regions of the African sector. Adv. in Space Res., 56 (9), 1939-1950.
https://doi.org/10.1016/j.asr.2015.05.037

55. Oyedokun O. J., Akala A. O., Oyeyemi E. O. (2020). Characterization of African Equatorial Ionization Anomaly (EIA) during the maximum phase of solar cycle 24. J. Geophys. Res.: Space Phys.
https://doi.org/10.1029/2019JA027066

56. Oyedokun O. J., Akala A. O., Oyeyemi E. O. (2021). Responses of the African equatorial ionization anomaly (EIA) to some selected intense geomagnetic storms during the maximum phase of solar cycle 24. Adv. in Space Res., 67 (4), 1222-1243.
https://doi.org/10.1016/j.asr.2020.11.020

57. Padokhin A. M., Tereshin N. A., Yasyukevich Y. V., Andreeva E. S., Nazarenko M. O., Yasyukevich A. S., ... Kurbatov G. A. (2019). Application of BDS-GEO for studying TEC variability in equatorial ionosphere on different time scales. Adv. in Space Res., 63 (1), 257-269.
https://doi.org/10.1016/j.asr.2018.08.001

58. Pahima T., Gnabahou D. A., Sandwidi S. A., Ouattara F., Faso B. (2023). Koudougou Station TEC's Variability Seasonal Anomalies Analysis during Fluctuating Events over Solar Cycle 24. Appl. Phys. Res., 15 (1).
https://doi.org/10.5539/apr.v15n1p50

59. Pignalberi l., Bilitza D., CoVsson P., Haralambous H., Nava B., Pezzopane M., Prol F., Smirnov A., Themens D. R., Xiong C. (2024).Validation of the IRI-2020 topside ionosphere options through in-situ electron density observations by low-Earth-orbit satellites, Adv. in Space Res.,
https://doi.org/10.1016/j.asr.2024.05.056

60. Prestes A., Rigozo N. R., Echer E., Vieira L. E. A. (2006). Spectral analysis of sunspot number and geomagnetic indices (1868-2001). J. Atmos. and Solar-Terr. Phys., 68 (2), 182-190.
https://doi.org/10.1016/j.jastp.2005.10.010

61. Purohit P. K., Bhawre P., Mansoori A. A., Khan P. A., Gwal A. K. (2011). Gps derived total electron content (TEC) variations over indian antarctica station, maitri. World Acad. Sci., Engin. Technol., 5, 11-23.

62. Rabiu A.b., Adewale A.O., Abdulrahim R.B., Oyeyemi E.O. (2014). TEC derived from some GPS stations in Nigeria and comparison with the IRI and NeQuick models. Adv. in Space Res. 53, 1290-1303.
https://doi.org/10.1016/j.asr.2014.02.009

63. Rama Rao P. V. S., Niranjan K., Prasad D. S. V. V. D., Gopi Krishna S., Uma G. (2006). On the validity of the ionospheric pierce point (IPP) altitude of 350 km in the Indian equatorial and low-latitude sector. Ann. Geophys. 24, No. 8, 2159-2168.
https://doi.org/10.5194/angeo-24-2159-2006

64. Rao S. S., Sharma S., Pandey R. (2019). Study of solar flux dependency of the winter anomaly in GPS TEC. GPS Solutions, 23 (1), 4.
https://doi.org/10.1007/s10291-018-0795-x

65. Reddybattula D., Kumar Panda S. (2019). Performance Analysis of Quiet and Disturbed Time Ionospheric TEC Responses from GPS-based Observations, IGS-GIM, IRI-2016 and SPIM/IRI-Plas 2017 Models over the Low Latitude Indian Region. Adv. in Space Res. 64 (10). 2026-2045.
https://doi.org/10.1016/j.asr.2019.03.034

66. Sahin R., Kabacelik I. (2018). Effects of ionizing radiation on the properties of mono-crystalline Si solar cells. Radiat. Phys. and Chem., 150, 90-94.
https://doi.org/10.1016/j.radphyschem.2018.04.033

67. Semeniuk K., Fomichev V. I., McConnell J. C., Fu C., Melo S. M. L., Usoskin I. G. (2011). Middle atmosphere response to the solar cycle in irradiance and ionizing particle precipitation. Atmos. Chem. and Phys., 11 (10), 5045-5077.
https://doi.org/10.5194/acp-11-5045-2011

68. Sorokin V. M., Chmyrev V. M., Hayakawa M. (2020). A review on electrodynamic influence of atmospheric processes to the ionosphere. Open J. Earthquake Res., 9 (2), 113-141. doi: 10.4236/ojer.2020.92008.
https://doi.org/10.4236/ojer.2020.92008

69. Su Y. Z., Bailey G. J., Balan N. (1995). Modelling studies of the longitudinal variations in TEC at equatorial-anomaly latitudes. J. Atmos. and Terr. Phys., 57 (4), 433-442.
https://doi.org/10.1016/0021-9169(94)E0008-B

70. Taabu S. D., D'ujanga F. M., Ssenyonga T. (2016). Prediction of ionospheric scintillation using neural network over East African region during ascending phase of sunspot cycle 24. Adv. in Space Res., 57 (7), 1570-1584.
https://doi.org/10.1016/j.asr.2016.01.014

71. Tariku Y. A. (2015). Patterns of GPS-TEC variation over low-latitude regions (African sector) during the deep solar minimum (2008 to 2009) and solar maximum (2012 to 2013) phases. Earth, Planets and Space, 67, 1-9.
https://doi.org/10.1186/s40623-015-0206-2

72. Tariku Y. A. (2019). Validation of the IRI 2016, IRI-Plas 2017 and NeQuick 2 models over the West Pacific regions using the SSN and F10.7 solar indices as proxy. J. Atmos. and Solar-Terr. Phys. 195, 105055.
https://doi.org/10.1016/j.jastp.2019.06.002

73. Tariku Y. A. (2020). Comparison of performance of the IRI 2016, IRI-Plas 2017, and NeQuick 2 models during different solar activity (2013-2018) years over South American sector. Radio Sci., 55 (8), 1-17.
https://doi.org/10.1029/2019RS007047

74. Vaishnav R., Jacobi C., Berdermann J. (2019, December). Long-term trends in the ionospheric response to solar extreme-ultraviolet variations. Ann. Geophys. 37, No. 6, 1141-1159. URL:
https://doi.org/10.5194/angeo-37-1141-2019

75. Vankadara R. K., Panda S. K., Amory-Mazaudier C., Fleury R., Devanaboyina V. R., Pant T. K., ... Seemala G. K. (2022). Signatures of equatorial plasma bubbles and ionospheric scintillations from magnetometer and GNSS observations in the Indian longitudes during the space weather events of early September 2017. Remote Sensing, 14 (3), 652.
https://doi.org/10.3390/rs14030652

76. Veronig A. M., Jain S., Podladchikova T., P'tzi W., Clette F. (2021). Hemispheric sunspot numbers 1874-2020. Astron. and Astrophys., 652, A56.
https://doi.org/10.1051/0004-6361/202141195

77. Wood A. G., Alfonsi L., Clausen L. B., Jin Y., Spogli L., Urb J., ... Miloch W. J. (2022). Variability of ionospheric plasma: Results from the ESA swarm mission. Space Sci. Revs, 218 (6), 52.
https://doi.org/10.1007/s11214-022-00916-0

78. Xie J., Wang H., Li P., Meng Y. (2021). Satellite navigation systems and technologies. Singapore: Springer.
https://doi.org/10.1007/978-981-15-4863-5

79. Yang Z., Morton Y. J., Zakharenkova I., Cherniak I., Song S., Li W. (2020). Global view of ionospheric disturbance impacts on kinematic GPS positioning solutions during the 2015 St. Patrick's Day storm. J. Geophys. Res.: Space Phys., 125 (7), e2019JA027681.
https://doi.org/10.1029/2019JA027681

80. Yasyukevich Y. V., Yasyukevich A. S., Ratovsky K. G., Klimenko M. V., Klimenko V. V., Chirik N. V. (2018). Winter anomaly in NmF2 and TEC: when and where it can occur. J. Space Weather and Space Climate, 8, A45.
https://doi.org/10.1051/swsc/2018036

81. Younas W., Amory-Mazaudier C., Khan M., Amaechi P. O. (2023). Climatology of global, hemispheric and regional electron content variations during the solar cycles 23 and 24. Adv. in Space Res., 71 (1), 16-28.
https://doi.org/10.1016/j.asr.2022.07.029

82. Zhou Q., Chen W., Zhou W. (2013). Solar cycle modulation of the ENSO impact on the winter climate of East Asia. J. Geophys. Res.: Atmos., 118 (11), 5111-5119.
https://doi.org/10.1002/jgrd.50453