Attenuation of acoustic-gravity waves based on modified Navier-Stokes and heat transfer equations

1Fedorenko, AK, Kryuchkov, EI, 1Cheremnykh, OK
1Space Research Institute under NAS and National Space Agency of Ukraine, Kyiv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2020, 36(5):15-30
https://doi.org/10.15407/kfnt2020.05.015
Start Page: Dynamics and Physics of Bodies of the Solar System
Language: Ukrainian
Abstract: 

Based on modified Navier-Stokes and heat transfer equations, attenuation of acoustic- gravity waves is studied within the framework of dissipative isothermal atmosphere model. In addition to usually considered velocity gradient, the modification of these equations consists in taking into account the additional transfer of momentum and energy caused by AGWs due to the density gradient. This leads to appearance of additional terms in hydrodynamic equations of motion and heat transfer. Under these assumptions, the local dispersion equation of acoustic-gravity waves in an isothermal dissipative atmosphere is obtained, as well as the expression for damping decrement in time. In limiting cases of high frequencies (sound waves) and low frequencies (gravitational waves), the nature of the attenuation allows a clear physical interpretation. The features of time attenuation of various types of evanescent acoustic-gravity modes are also considered including Lamb waves and Brent-Väisälä oscillations.

Keywords: acoustic-gravity wave, atmosphere, molecular viscosity, thermal conductivity
References: 

1. Yu. P. Ladikov-Roev and O. K. Cheremnykh, Mathematical Models of Continuous Media (Naukova Dumka, Kyi-v, 2010) [in Russian].

2. Yu. P. Ladikov-Roev, O. K. Cheremnykh, A. K. Fedorenko, and V. E. Nabivach. Acoustic-gravitational waves in a vortex polar thermosphere, Probl. Upr. Inf., No. 5, 74–84 (2015).

3. L. D. Landau and E. M. Lifshits, A Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Nauka, Moscow, 1986; Pergamon, Oxford, 1987).

4. P. V. Lebedev-Stepanov. Flow of a viscous compressible medium: Invalidity of the Navier–Stokes equation, Dokl. Phys. Chem. 417, 319–324 (2007).
https://doi.org/10.1134/S0012501607120019

5. G. V. Lizunov and A. Yu. Leont’ev. Height of the penetration into the ionosphere for internal atmosphere gravity waves, Kosm. Nauka Tekhnol. 20 (4), 31–41 (2014).
https://doi.org/10.15407/knit2014.04.031

6. A. K. Fedorenko and E. I. Kryuchkov. Distribution of medium-scale acoustic gravity waves in polar regions according to satellite measurement data, Geomagn. Aeron. (Engl. Transl.) 51, 520–533 (2011).
https://doi.org/10.1134/S0016793211040128

7. O. K. Cheremnykh, Yu. A. Selivanov, and I. V. Zakharov. The influence of compressibility and nonisothermality of the atmosphere on the propagation of acousto-gravity waves, Kosm. Nauka Tekhnol. 16 (1), 9–19 (2010).
https://doi.org/10.15407/knit2010.01.009

8. T. Beer, Atmospheric Waves (Wiley, New York, 1974).

9. O. K. Cheremnykh, A. K. Fedorenko, E. I. Kryuchko, and Y. A. Selivanov. Evanescent acoustic-gravity modes in the isothermal atmosphere: Systematization, applications to the Earth’s and Solar atmospheres, Ann. Geophys. 37, 405–415 (2019).
https://doi.org/10.5194/angeo-37-405-2019

10. M. S. Cramer. Numerical estimates for the bulk viscosity of ideal gases, Phys. Fluids 24, 066102 (2012).
https://doi.org/10.1063/1.4729611

11. A. Dalgarno and F. J. Smith. The viscosity and thermal conductivity of atomic oxygen, Planet. Space. Sci. 9 (1–2) (1962).
https://doi.org/10.1016/0032-0633(62)90064-8

12. A. K. Fedorenko, A. V. Bespalova, O. K. Cheremnykh, and E. I. Kryuchkov. A dominant acoustic-gravity mode in the polar thermosphere, Ann. Geophys. 33, 101–108 (2015).
https://doi.org/10.5194/angeo-33-101-2015

13. S. H. Francis. Global propagation of atmospheric gravity waves: A review, J. Atmos. Terr. Phys. 37, 1011–1054 (1975).
https://doi.org/10.1016/0021-9169(75)90012-4

14. D. C. Fritts and S. L. Vadas. Gravity wave penetration into the thermosphere: Sensitivity to solar cycle variations and mean winds, Ann. Geophys. 26, 3841–3861 (2008). http://www.ann-geophys.net/26/3841/2008/.
https://doi.org/10.5194/angeo-26-3841-2008

15. C. O. Hines. Internal gravity waves at ionospheric heights, Can. J. Phys. 38, 1441–1481 (1960).
https://doi.org/10.1139/p60-150

16. J. L. Innis and M. Conde. Characterization of acoustic-gravity waves in the upper thermosphere using Dynamics Explorer 2 Wind and Temperature Spectrometer (WATS) and Neutral Atmosphere Composition Spectrometer (NACS) data, J. Geophys. Res.: Space Phys. 107, 1 (2002).
https://doi.org/10.1029/2002JA009370

17. F. S. Johnson, W. B. Hanson, R. R. Hodges, W. R. Coley, G. R. Carignan, and N. W. Spencer. Gravity waves near 300 km over the polar caps, J. Geophys. Res.: Space Phys. 100, 23993–24002 (1995).
https://doi.org/10.1029/95JA02858

18. W. L. Jones. Non-divergent oscillations in the solar atmosphere, Sol. Phys. 7, 204–209 (1969).
https://doi.org/10.1007/BF00224898

19. P. Kundu, Fluid Dynamics (Elsevier, New York, 1990).

20. I. Tolstoy. The theory of waves in stratified fluids including the effects of gravity and rotation, Rev. Mod. Phys. 35 (1) (1963).
https://doi.org/10.1103/RevModPhys.35.207

21. S. L. Vadas and M. J. Fritts. Thermospheric responses to gravity waves: Influences of increasing viscosity and thermal diffusivity, J. Geophys. Res.: Atmos. 110, D15103 (2005).
https://doi.org/10.1029/2004JD005574

22. S. L. Vadas and D. C. Nicolls. The phases and amplitudes of gravity waves propagating and dissipating in the thermosphere: Theory, J. Geophys. Res.: Space Phys. 117, A05322 (2012).
https://doi.org/10.1029/2011JA017426

23. R. L. Waltercheid and J. H. Hecht. A reexamination of evanescent acoustic-gravity waves: Special properties and aeronomical significance, J. Geophys. Res.: Atmos. 108, 4340 (2003).
https://doi.org/10.1029/2002JD002421

24. M. Yanowitch. Effect of viscosity on vertical oscillations of an isothermal atmosphere, Can. J. Phys. 45, 2003–2008 (1967).
https://doi.org/10.1139/p67-157

25. K. S. Yeh and C. H. Liu. Acoustic-gravity waves in the upper atmosphere, Rev. Geophys. Space. Phys. 12, 193–216 (1974).
https://doi.org/10.1029/RG012i002p00193