Physical effects from the Kyiv meteoroid. 1.
1Chernogor, LF 1V.N. Karazin Kharkiv National University, Kharkiv, Ukraine |
Kinemat. fiz. nebesnyh tel (Online) 2023, 39(5):24-53 |
https://doi.org/10.15407/kfnt2023.05.024 |
Язык: Ukrainian |
Аннотация: The purpose of this work is a comprehensive simulation and estimation of the effects in gas dynamics as well as mechanical and optical effects from the Kyiv meteoroid that entered the terrestrial atmosphere and exploded over Bila Tserkva district, Kyiv region (Ukraine). According to the International Meteor Organization (IMO), the apparent magnitude was –18m. According to our estimates, the luminous power was 215 GW with an effective duration of 2.4 ± 0.2 s, and the total luminous energy was 25.2 ± 2.5 GJ, the initial kinetic energy was 0.09 ± 0.01 kt of TNT or 375 ± 3 GJ. The initial mass of the cosmic body was estimated to be 0.89 ± 0.09 t, the volume was 0.250 ± 0.025 m3, and the size was 79 ± 3 cm. The initial velocity of the meteoroid reached 29 km/s. The inclination angle, the angle that the trajectory makes with the horizontal plane was 32. The altitude of the explosion, 38 km and the angle, 32°, give an estimate of the material density of approximately 3.5 t/m3, close to the rock density. The energy of the processes and effects in gas dynamics as well as mechanical and optical effects from the celestial body have been analyzed. The main release of energy associated with the deceleration of the fragments of the celestial body, which was defragmented under a dynamical pressure of ~ 2.5 MPa, took place in the region of 2 km in length at an altitude of about 38 km. A quasi-continuous defragmentation was suggested to produce a mass distribution that follows a power law. The main parameters of the ballistic and explosive shock waves have been estimated. For the Mach number of 97, the radius of the ballistic shock wave was estimated to be about 77 m and the fundamental period to be 0.7 s, which showed a dispersive increase from 3.7 s to 11.5 s with the propagation path length increasing from 50 km to 5,000 km. The radii of cylindrical and spherical wavefront shock wave were approximately 0.28 km and 0.34 km respectively, and fundamental period was about 2.6 s and 3.2 s respectively. This period had been increasing from 9.5 s to 30.0 s and from 11.1 s to 35.1 s with the propagation path length increasing from 50 km to 5,000 km. In the vicinity of the meteoroid terminal point, the excess pressure was a maximum on a relative scale. It decreased with decreasing altitude, and increased with increasing altitude up to an altitude of approximately 120...150 km where it attained values of ~ 6...7 of percent, and further it decreased down to units of percent. The absolute value of the excess pressure was estimated to be near the altitude of the explosion, subsequently it decreased with decreasing altitude down to 20...25 km, and further it again increased. At the epicenter of the explosion, it was estimated to be about 94 Pa for cylindrical wavefront and ~ 99 Pa for spherical wavefront, which is not enough to damage objects on the ground. The excess pressure decreased with increasing altitude from 8...15 pascals to micropascals. Given the average duration of the effective light flash of 2.4 s, the maximum power of the fireball was estimated to be 21 GW, the flux of power near the fireball (or more precisely, the cone of 0.5 km in length and of 2.4 m in diameter) to be 5.1 MW/m2. At the same time, the temperature was estimated to be about 3,100 K, and Wien wavelength to be 9.4*10–7 m. |
Ключевые слова: ablation, ballistic shock wave, deceleration, effect in gas dynamics, excess pressure, fundamental period, inclination angle, mechanical effect, meteoroid, optical effect, spherical shock wave |
1. Solar System Research. (2013). 47(4) [In Russian].
2. Bronshten V. A. (1983). Physics of meteoric phenomena (Dordrecht, Holland: D. Reidel Publishing Company). https://doi.org/10.1007/978-94-009-7222-3
3. Gossard E. E., Hooke W. H. (1975). Waves in the atmosphere: atmospheric infrasound and gravity waves, their generation and propagation (Developments in Atmospheric Science). (Amsterdam: Elsevier Scientific Pub. Co.).
4. Dynamic Processes in Geospheres. (2014). Issue 5: Geodesic effects of the fall of Chelyabinsk meteoroid (Mosсow, Russia: GEOS), in Ser.: Collection of Scientific Papers of the Institute of Geosphere Dynamics, Russian Academy of Sciences, Special Issue [in Russian].
5. Emel'yanenko V. V., Popova O. P., Chugai N. N., Shelyakov M. A., Pakhomov Yu. V., Shustov B. M., Shuvalov V. V., Biryukov E. E., Rybnov Yu. S., Marov M. Ya., Rykhlova L. V., Naroenkov S. A., Kartashova A. P., Kharlamov V. A., Trubetskaya I. A. (2013). Astronomical and physical aspects of the Chelyabinsk event (February 15, 2013). Solar Syst. Res. 47(4), 240-254 https://doi.org/10.1134/S0038094613040114
6. Lazorenko O. V., Chernogor L. F. (2017). System spectral analysis of infrasonic signal generated by Chelyabinsk meteoroid. Radioelectronics and Communications Systems. 60(8), 331-338 https://doi.org/10.3103/S0735272717080015
7. Chelyabinsk Meteorite - A Year on Earth. Proc. All-Russ. Sci. Conf. (2014). Chelyabinsk, Feb. 14-15, 2014, Ed. by N. A. Antipin, et al. (Chelyabinsk: Chelyabinsk State Etnograph. Mus.) [In Russian].
8. Mylovanov Yu. B., Chernogor L. F. (2018). Dynamics of the Chelyabinsk meteoroid entering the atmosphere: mass-energy balance. Radio Phys. and Radio Astron. 23(3), 176-188. [In Russian] https://doi.org/10.15407/rpra23.03.176
9. Gorkavyi N., Dudorov A., Taskaev S. (eds.) (2019). Chelyabinsk Superbolide. (Springer Nature Switzerland AG: Springer International Publishing). https://doi.org/10.1007/978-3-030-22986-3
10. Chernogor L. F. (2012). Physics and ecology of catastrophes: Monograph (Kharkiv: V. N. Karazin Kharkiv National University) [In Russian].
11. Chernogor L. F. (2013). Plasma, electromagnetic, and acoustic effects of the «Chelyabinsk» meteorite. Inzhenernaja Fizika. (8), 23-40 [In Russian].
12. Chernogor L. F. (2013). Physical effects of the Chelyabinsk meteorite passage. DAN Ukraine, (10), 97-104. URL: http://dspace.nbuv.gov.ua/handle/123456789/86192. [In Russian].
13. Chernogor L. F. (2013). Large-scale disturbances in the Earth's magnetic field associated with the Chelyabinsk meteorite event. Radiophys. and Electronics. 4(18) (3), 47-54.
14. Chernogor L. F. (2014). Basic effects of Chelyabinsk meteoroid fall: the results of physical-mathematic simulation. Proc. of All-Russian Sci. Conf. on Chelyabinsk meteorite - a year at the Earth, 2014. (Chelyabinsk, Russia) [In Russian].
15. Chernogor L. F. (2014). Geomagnetic field effects of the Chelyabinsk meteoroid. Geomagnetism and Aeronomy. 54(5), 613-624. https://doi.org/10.1134/S001679321405003X
16. Chernogor L. F. (2015). Ionospheric effects of the Chelyabinsk meteoroid. Geomagnetism and Aeronomy. 55(3), 353-368. https://doi.org/10.1134/S0016793215030044
17. Chernogor L. F. (2016). Physical effects, that accompanied a passage and explosion of Chelyabinsk meteoroid. All-Ukrainian Interdepartmental Scientific and Technical Journal "Radiotehnika". 184, 32-36 [In Russian].
18. Chernogor L. F. (2017). Atmospheric effects of the gas-dust plume of the Chelyabinsk meteoroid of 2013. Izvestiya, Atmos. and Oceanic Phys. 53(3), 259-268. https://doi.org/10.1134/S0001433817030033
19. Chernogor L. F. (2017). Chelyabinsk meteoroid acoustic effects. Radio Physics and Radio Astronomy. 22(1), 53-66. [In Russian]. https://doi.org/10.15407/rpra22.01.053
20. Chernogor L. F. (2017). Disturbance in the lower ionosphere that accompanied the reentry of the Chelyabinsk cosmic body. Cosmic Res. 55(5), 323-332. https://doi.org/10.1134/S0010952517050033
21. Chernogor L. F. (2018). Magnetospheric effects during the approach of the Chelyabinsk meteoroid. Geomagnetism and Aeronomy. 58(2), 252-265. https://doi.org/10.1134/S0016793218020044
22. Chernogor L. F. (2018). The physical effects of Romanian meteoroid. 1. Space Sci. and Technol. 24(1), 49-70. https://doi.org/10.15407/knit2018.01.049
23. Chernogor L. F. (2018). The physical effects of Romanian meteoroid. 2. Space Sci. and Technol. 24(2), 18-35. https://doi.org/10.15407/knit2018.02.018
24. Chernogor L. F. (2018). Parameters of acoustic signals generated by the atmospheric meteoroid explosion over Romania on January 7, 2015. Solar Syst. Res. 52(3), 206-222. https://doi.org/10.1134/S0038094618030048
25. Chernogor L. F. (2019). Physical effects of the Lipetsk meteoroid: 1. Kinemat. Phys. Celest. Bodies: in 3 Parts. https://doi.org/10.3103/S0884591319060023 Part 1. 35(4), 174-188. https://doi.org/10.3103/S0884591319040020 Part 2. 35(5), 217-230. https://doi.org/10.3103/S0884591319050027 Part 3. 35(6), 271-285. https://doi.org/10.3103/S0884591319060023
26. Chernogor L. F. (2020). Ionospheric effects of the Lipetsk meteoroid. Geomagnetism and Aeronomy. 60(1), 80-89. https://doi.org/10.1134/S0016793219060057
27. Chernogor L. F. (2020). Effects of the Lipetsk meteoroid in the geomagnetic field. Geomagnetism and Aeronomy. 60(3), 355-372. https://doi.org/10.1134/S0016793220030032
28. Chernogor L. F. (2021). Kamchatka meteoroid effects in the lithosphere - atmosphere - ionosphere - magnetosphere system. Proceedings of the XII International Conference and School «Problems of Geocosmos-2021». (March 24-27, 2021, St. Petersburg, Russia). [In Russian].
29. Chernogor L. F., Barabash V. V. (2014). Ionosphere disturbances accompanying the flight of the Chelyabinsk body. Kinemat. Phys. Celest. Bodies. 30(3), 126-136. https://doi.org/10.3103/S0884591314030039
30. Chernogor L. F., Garmash K. P. (2013). Disturbances in Geospace Associated with the Chelyabinsk Meteorite Passage. Radio Physics and Radio Astronomy. 18(3), 231-243 [in Russian]. http://rpra-journal.org.ua/index.php/ra/article/view/1142
31. Chernogor L. F., Liashchuk O. I. (2017). Parameters of Infrasonic Waves Generated by the Chelyabinsk Meteoroid on February 15, 2013. Kinemat. Phys. Celest. Bodies. 33(2), 79-87. https://doi.org/10.3103/S0884591317020027
32. Chernogor L. F., Mylovanov Yu. B. (2018). Dynamics of the Chelyabinsk meteoroid fall: altitude and time dependences. Radio Physics and Radio Astronomy. 23(2), 104-115 [In Russian]. https://doi.org/10.15407/rpra23.02.104
33. Chernogor L. F., Shevelev M. B. (2018). Parameters of the infrasound signal generated by a meteoroid over Indonesia on October 8, 2009. Kinemat. Phys. Celest. Bodies. 34(3), 147-160. https://doi.org/10.3103/S0884591318030030
34. Chernogor L. F., Shevelev N. B. (2018). Characteristics of the infrasound signal generated by Chelyabinsk celestial body: global statistics. Radio Phys. and Radio Astron. 23(1), 24-35. [In Russian]. https://doi.org/10.15407/rpra23.01.024
35. Chernogor L. F. (2020). Geomagnetic Variations Caused by the Lipetsk Meteoroid's Passage and Explosion: Measurement Results. Kinemat. Phys. Celest. Bodies. 2020. 36(2), 79-93. https://doi.org/10.3103/S0884591320020038
36. Chernogor L. F. (2022). Physical Effects of the Yushu Meteoroid: 1. Kinemat. Phys. Celest. Bodies: in 3 Parts. https://doi.org/10.3103/S0884591322030035 Part 1. 38(3), 132-147. https://doi.org/10.3103/S0884591322030035 Part 2. 39(3), 123-136. https://doi.org/10.3103/S0884591323030029 Part 3. 39(3), 137-153. https://doi.org/10.3103/S0884591323030030
37. Chernogor L. F., Liashchuk O. I., Shevelev M. B. (2020). Parameters of the Infrasonic Signal Generated by the Kamchatka Meteoroid. Kinemat. Phys. Celest. Bodies. 36(5), 222-237. https://doi.org/10.3103/S0884591320050037
38. Chernogor L. F., Mylovanov Yu. B. (2021). Dynamic falling of the Chelyabinsk meteoroid: Sizes, radiation, and destruction. Kinemat. Phys. Celest. Bodies. 37(5), 241-262. https://doi.org/10.3103/S0884591321050056
39. Chernogor L. F., Shevelev M. B. (2020). Characteristics of infrasonic signals generated by the Lipetsk meteoroid: Statistical analysis. Kinemat. Phys. Celest. Bodies. 36(4), 186-194. https://doi.org/10.3103/S0884591320040030
40. Catastrophic Events Caused by Cosmic Objects. (2008). Ed.: Adushkin V., Nemchinov I. (Netherlands: Springer). https://doi.org/10.1007/978-1-4020-6452-4
41. Chernogor L. F. (2014). Large-scale disturbances in the earth's magnetic field associated with the Chelyabinsk meteorite event. Telecommunications and Radio Engineering. 73, 1105-1115. https://doi.org/10.1615/TelecomRadEng.v73.i12.60
42. Chernogor L. F. (2022). Kamchatka meteoroid effects in the lithosphere - atmosphere - ionosphere - magnetosphere system. In: Kosterov A., Bobrov N., Gordeev E., Kulakov E., Lyskova E., Mironova I. (eds) Problems of Geocosmos-2020. Springer Proceedings in Earth and Environmental Sciences. Springer, Cham., 365-377. https://doi.org/10.1007/978-3-030-91467-7_27
43. Chernogor L. F. (2023). Physical effects of the Kyiv Meteoroid. International Conference «Astronomy and Space Physics in the Kyiv University» May 23-26. Book of Abstracts. P. 98-99. https://doi.org/10.3103/S088459132306003X
44. Chernogor L. F., Rozumenko V. T. (2013). The physical effects associated with Chelyabinsk meteorite's passage. Probl. Atomic Sci. and Technol., 86(4), 136-139.
45. Chernogor L. F., Liashchuk O. I., Shevelev M. B. (2023). Infrasonic effect of the Kyiv meteoroid. International Conference «Astronomy and Space Physics in the Kyiv University» May 23-26. Book of Abstracts. P. 115-116.
46. Gavrilov B. G., Pilipenko V. A., Poklad Y. V., Ryakhovsky I. A. (2020). Geomagnetic effect of the Bering Sea meteoroid. Russian J. Earth Sci. 20(6), ES6009. https://doi.org/10.2205/2020ES000748
47. Glasstone S., Dolan P. J. (1977). Effects of nuclear weapons. (Washington, DC (USA): Department of Defense, Department of Energy). https://doi.org/10.21236/ADA087568
48. Infrasound Monitoring for Atmospheric Studies (2019). Eds A. Le Pichon, E. Blanc, A. Hauchecorne. (Dordrecht Heidelberg London New York: Springer).
49. Luo Y., Chernogor L. F., Garmash K. P., Guo Q., Rozumenko V. T., Shulga S. N., Zheng Y. (2020). Ionospheric effects of the Kamchatka meteoroid: Results from multipath oblique sounding. J. Atmos. and Solar-Terr. Phys. 207, 105336. https://doi.org/10.1016/j.jastp.2020.105336
50. McCord T. B., Morris J., Persing D., Tagliaferri E., Jacobs C., Spalding R., Grady L., Schmidt R. (1995). Detection of a meteoroid entry into the Earth's atmosphere on February 1, 1994. J. Geophys. Res. 100(E2), 3245-3249. https://doi.org/10.1029/94JE02802
51. Popova O., Jenniskens P., Emelyanenko V., Kartashova A., Biryukov E., Khaibrakhmanov S., Shuvalov V., Rybnov Y., Dudorov A., Grokhovsky V., Badyukov D., Qing-Zhu Yin, Gural P., Albers J., Granvik M., Evers L., Kuiper J., Kharlamov V., Solovyov A., Rusakov Y., Korotkiy S., Serdyuk I., Korochantsev A., Larionov M., Glazachev D., Mayer A., Gisler G., Gladkovsky S., Wimpenny J., Sanborn M., Yamakawa A., Verosub K., Rowland D., Roeske S., Botto N., Friedrich J., Zolensky M., Le L., Ross D., Ziegler K., Nakamura T., Ahn I., Lee J., Qin Zhou, Xian-Hua Li, Qiu-Li Li, Liu Y., Guo-Qiang Tang, Hiroi T., Sears D., Weinstein I., Vokhmintsev A., Ishchenko A., Schmitt-Kopplin P., Hertkorn N., Nagao K., Haba M., Komatsu M., Mikouchi T. (2013). Supplementary material for Chelyabinsk airburst, damage assessment, meteorite, and characterization. Science. 1242642/DC1. URL: www.sciencemag.org/cgi/content/full/ https://doi.org/10.1126/science.1242642
52. Popova O., Jenniskens P., Emelyanenko V., Kartashova A., Biryukov E., Khaibrakhmanov S., Shuvalov V., Rybnov Y., Dudorov A., Grokhovsky V., Badyukov D., Qing-Zhu Yin, Gural P., Albers J., Granvik M., Evers L., Kuiper J., Kharlamov V., Solovyov A., Rusakov Y., Korotkiy S., Serdyuk I., Korochantsev A., Larionov M., Glazachev D., Mayer A., Gisler G., Gladkovsky S., Wimpenny J., Sanborn M., Yamakawa A., Verosub K., Rowland D., Roeske S., Botto N., Friedrich J., Zolensky M., Le L., Ross D., Ziegler K., Nakamura T., Ahn I., Lee J., Qin Zhou, Xian-Hua Li, Qiu-Li Li, Liu Y., Guo-Qiang Tang, Hiroi T., Sears D., Weinstein I., Vokhmintsev A., Ishchenko A., Schmitt-Kopplin P., Hertkorn N., Nagao K., Haba M., Komatsu M., Mikouchi T. (2013). Chelyabinsk airburst, damage assessment, meteorite, and characterization. Science. 342, 1069-1073. https://doi.org/10.1126/science.1242642
53. Pricopi D., Dascalu M., Badescu O., Nedelcu D., Popescu M., Sonka A., Suran M. (2016). Orbit reconstruction for the meteoroid of the meteorite-producting fireball that exploded over Romania on January 7, 2015. Proceedings Romanian Academy, Series A. 17(2), 133-136.