Electromagnetic coupling of geospheres. 1. Disturbances in the lower ionosphere

Heading: 
1Chernogor, LF
1V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2025, 41(1):3-23
https://doi.org/10.15407/kfnt2025.01.003
Мова: Ukrainian
Анотація: 

The relevance of the paper is due to the fact that today there is no reliable and detailed substantiation of the electromagnetic mechanism subsystems coupling in the Earth (inner shells) — atmosphere — ionosphere — magnetosphere system. This mechanism can manifest itself during the action of high-energy sources of natural and man-made origin. Natural sources include weather fronts, thunderstorms, hurricanes (typhoons), volcanic eruptions, earthquakes, etc. All these natural processes can be accompanied by the generation of powerful electromagnetic radiation in the VLF range (~3...30 kHz). Such radiation is capable of interacting with the plasma of the lower ionosphere and causing a number of secondary geophysical processes. The purpose of the paper is to describe the results of a study of the electromagnetic mechanism of interaction between subsystems in the EAIM system. A single lightning strike in the daytime can lead to an increase in electron temperature by 60...44 times at altitudes of 60...80 km respectively. At night, a significant increase (60...50 times) in electron temperature is possible at altitudes of 80...95 km, respectively. Significant heating of electrons is the cause of the transparentization effect of the lower ionosphere plasma, which is accompanied by a decrease in the absorption of electromagnetic radiation at altitudes up to 80 km in the daytime. At night, on the contrary, at altitudes of 80...100 km, the effect of plasma turbidization occurs, accompanied by an increase in the absorption of electromagnetic radiation. A single lightning strike is not capable of leading to a noticeable disturbance in electron density and the dispersion of its fluctuations. A single lightning strike can cause minor (~0.01 nT) disturbances in the geomagnetic field and significant (~1 V/m) bursts in the solenoidal electric field. At a sufficiently high lightning frequency, a noticeable disturbance in electron density and the dispersion of its fluctuations can occur. In this case, the effect of accumulation of disturbances N and N2 can be observed. Significant disturbances in the parameters of the lower ionosphere can lead to the generation of secondary effects propagating to the magnetosphere and the magnetoconjugate region.

Ключові слова: electromagnetic radiation, electron density disturbance, electron heating, lightning, lower ionosphere, secondary effects
References: 

1. Bazelyan E. M., Raizer Y. P. (2000). Lightning physics and lightning protection. CRC Press, Boca Raton.
https://doi.org/10.1201/9780367801533

2. Imyanitov I. M., Chubarina E. V., Schwartz Ya. M. (1971). Electricity of Clouds. Leningrad: Gidrometeoizdat.

3. Lizunov G. V., Skorokhod Т. V., Korepanov V. Ye. (2020). Atmospheric gravity waves among other physical mechanisms of seismic-ionospheric coupling. Space Sci. Technol., 26(3), 55-80.
https://doi.org/10.15407/knit2020.03.055

4. Chernogor L. F. (2006). The tropical cyclone as an element of the Earth - atmosphere - ionosphere - magnetosphere system. Space Sci. Technol. 12(2-3), 16-36. [in Russian].
https://doi.org/10.15407/knit2006.02.016

5. Chernogor L. F. (2009). Radiophysical and geomagnetic effects of rocket engine burn: monograph. Kharkiv: V. N. Karazin Kharkiv National University Publ. [in Russian].

6. Chernogor L. F. (2012). Physics and ecology of disasters. Kharkiv: V. N. Karazin Kharkiv National University Publ. [in Russian].

7. Chernogor, L. F., 2013. Physical effects of solar eclipses in atmosphere and geospace: Monograph. V. N. Karazin Kharkiv National University Publ., Kharkiv. [in Russian].

8. Chernogor L. F. (2014). Physics of powerful radio emission in geospace: Monograph. Kharkiv: V. N. Karazin Kharkiv National University Publ. [in Russian].

9. Chernogor L. F., Domnin I. F. (2014). Physics of geospace storms: Monograph. Kharkiv: V. N. Karazin Kharkiv National University, Institute of Ionosphere NAS and MES of Ukraine. [in Russian].

10. Chernogor L. F. (2020). Geomagnetic variations caused by the Lipetsk Meteoroid's passage and explosion: Measurement results. Kinematics and Phys. Celestial Bodies, 36(2), 79-93.
https://doi.org/10.3103/S0884591320020038

11. Chernogor L. F. (2021). Physics of geospace storms. Kosm. nauka tehnol., 27(1), 3-77. [in Ukrainian]. DOI: 10.15407/knit2021.01.003
https://doi.org/10.15407/knit2021.01.003

12. Chernogor L. F. (2022). Kamchatka meteoroid effects in the geomagnetic field. Kinematics and Phys. Celestial Bodies, 38(1), 25-48.
https://doi.org/10.3103/S0884591322010032

13. Chernogor L. F. (2022). Geomagnetic effect of the solar eclipse of June 10, 2021. Kinematics and Phys. Celestial Bodies, 38(1), 11-24.
https://doi.org/10.3103/S0884591322010020

14. Chernogor L. F. Role of non-stationary high-energy processes and atmospheric turbulence in electrical interaction of geospheres. Kinematics and Phys. Celestial Bodies. 2024. 40, № 4. P. 22-44. [in Ukrainian].
https://doi.org/10.15407/kfnt2024.04.022

15. Blake J. B., Inan U. S., Walt M., Bell T. F., Bortnik J., Chenette D. L., Christian H. J. (2001). Lightning-induced energetic electron flux enhancements in the drift loss cone. J. Geophys. Res.: Space Phys., 106(A12), 29733-29744.
https://doi.org/10.1029/2001JA000067

16. Burgess W. C., Inan U. S. Simultaneous disturbance of conjugate ionospheric regions in association with individual lightning flashes. Geophys. Res. Lett. 1990. 17, № 3. 259-262.
https://doi.org/10.1029/GL017i003p00259

17. Chernogor L. F. (2014). Geomagnetic field effects of the Chelyabinsk meteoroid. Geomagnetism and Aeronomy, 54(5), 613-624. DOI:
https://doi.org/10.1134/S001679321405003X

18. Chernogor L. F. (2019). Geomagnetic disturbances accompanying the great Japanese earthquake of March 11, 2011. Geomagnetism and Aeronomy, 59(1), 62-75.
https://doi.org/10.1134/S0016793219010043

19. Chernogor L. F. (2020). Effects of the Lipetsk meteoroid in the geomagnetic field. Geomagnetism and Aeronomy, 60(3), 355-372.
https://doi.org/10.1134/S0016793220030032

20. Chernogor L. F. (2023). A tropical cyclone or typhoon as an element of the Earth - atmosphere - ionosphere - magnetosphere system: Theory, simulations, and observations. Remote Sensing, 15, 4919. DOI: 10.3390/rs15204919
https://doi.org/10.3390/rs15204919

21. Chernogor L. F., Blaunstein N. (2013). Radiophysical and geomagnetic effects of rocket burn and launch in the near-the-earth environment. Boca Raton, London, New York: CRC Press. Taylor & Francis Group.

22. Gurevich A. V., Zybin K. P. (2001). Runaway breakdown and electric discharges in thunderstorms. Phys. Usp., 44(11), 1119-1140.
https://doi.org/10.1070/PU2001v044n11ABEH000939

23. Imhof W. L., Reagan J. B., Voss H. D., Gaines E. E., Datlowe D. W., Mobilia J., Helliwell R. A., Inan U. S., Katsufrakis J., Joiner R. G. (1983). Direct observation of radiation belt electrons precipitated by the controlled injection of VLF signals from a ground-based transmitter. Geophys. Res. Lett., 10(4), 361-364.
https://doi.org/10.1029/GL010i004p00361

24. Imhof W. L., Reagan J. B., Voss H. D., Gaines E. E., Datlowe D. W., Mobilia J., Helliwell R. A., Inan U. S., Katsufrakis J., Joiner R. G. (1983). The modulated precipitation of radiation belt electrons by controlled signals from VLF transmitters. Geophys. Res. Lett., 10(8), 615-618.
https://doi.org/10.1029/GL010i008p00615

25. Inan U. S. VLF heating of the lower ionosphere. Geophys. Res. Lett. 1990. 17, № 6. Р. 729-732.
https://doi.org/10.1029/GL017i006p00729

26. Inan U. S., Bell T. F., Rodriguez J. V. (1991). Heating and ionization of the lower ionosphere by lightning. Geophys. Res. Lett., 18(4), 705-708.
https://doi.org/10.1029/91GL00364

27. Inan U. S., Rodriguez J. V., Idone V. P. (1993). VLF signatures of lightning-induced heating and ionization of the nighttime D-region. Geophys. Res. Lett., 20(21), 2355-2358.
https://doi.org/10.1029/93GL02620

28. Iudin D. I., Davydenko S. S., Gotlib V. M., Dolgonosov M. S., Zelenyi L. M. (2018). Physics of lightning: new model approaches and prospects of the satellite observations. Phys. Usp., 61, 766-778.
https://doi.org/10.3367/UFNe.2017.04.038221

29. Lizunov G., Skorokhod T., Hayakawa M., Korepanov V. (2020). Formation of ionospheric precursors of earthquakes - probable mechanism and its substantiation. Open J. Earthq. Res., 9, 142-169.
https://doi.org/10.4236/ojer.2020.92009

30. Luo Y., Chernogor L. F. (2023). Resonance electromagnetic effect of the Kamchatka meteoroid. Kinematics and Phys. Celestial Bodies, 39(1), 1-9.
https://doi.org/10.3103/S0884591323010051

31. Peter W. B., Inan U. S. (2005). Electron precipitation events driven by lightning in hurricanes. J. Geophys. Res.: Space Phys., 110(A5), id:A05305.
https://doi.org/10.1029/2004JA010899

32. Rodriguez J. V., Inan U. S., Bell T. F. (1992). D region disturbances caused by electromagnetic pulses from lightning. Geophys. Res. Lett., 19(20), 2067-2070.
https://doi.org/10.1029/92GL02379

33. Taranenko Y. N., Inan U. S., Bell T. F. (1992). Optical signatures of lightning-Induced heating of the D region. Geophys. Res. Lett., 19(18), 1815-1818.
https://doi.org/10.1029/92GL02106

34. Taranenko Y. N., Inan U. S., Bell T. F. (1993). Interaction with the lower ionosphere of electromagnetic pulses from lightning: Heating, attachment, and ionization. Geo¬phys. Res. Lett., 20(15), 1539-1542.
https://doi.org/10.1029/93GL01696

35. Taranenko Y. N., Inan U. S., Bell T. F. (1993). The interaction with the lower ionosphere of electromagnetic pulses from lightning: Excitation of optical emissions. Geophys. Res. Lett., 20(23), 2675-2678.
https://doi.org/10.1029/93GL02838

36. Uman M. A. (1988). Natural and artificially lightning and test standards. Proc. IEEE, 76(12), 5-26.
https://doi.org/10.1109/5.16349

37. Uman M. A. (2011). Lightning. Dover Publications.

38. Voss H. D., Imhof W. L., Walt M., Mobilia J., Gaines E. E., Reagan J. B., Inan U. S., Helliwell R. A., Carpenter D. L., Katsufrakis J. P., et al. (1984). Lightning-induced electron precipitation. Nature, 312, 740-742.
https://doi.org/10.1038/312740a0

39. Watt A. D. (1967). International series of monographs in electromagnetic waves. New York: Pergamon.