Seasonal changes of activity factor for Jupiter’s hemispheres restored its periodicity

1Vidmachenko, AP
1Main Astronomical Observatory of the National Academy of Sciences of Ukraine, Kyiv, Ukraine
Kinemat. fiz. nebesnyh tel (Online) 2019, 35(4):71-80
https://doi.org/10.15407/kfnt2019.04.071
Start Page: Dynamics and Physics of Solar System Bodies
Language: Russian
Abstract: 

We have concluded that in the powerful magnetosphere of Jupiter, the sunflower point, changing over the orbital period by an angle of >26°, causes variations in physical characteristics of the atmosphere, manifesting seasonal changes. A significant eccentricity of the planetary orbit leads to the fact that the influx of energy to the atmosphere in the northern hemisphere is 21 % greater, because at the moment close to the summer solstice for the northern hemisphere, the planet is at perihelion. This causes the asymmetry of the meridional distribution of the reflective properties of the visible cloud layer. Analysis of observational data for years 1960—2019 shows that the ratio AJ = BN/BS describes well the changes in atmospheric processes on Jupiter, showing quasi-periodic variations of reflective characteristics of northern and southern temperate and tropical regions during the period of orbital moving around Sun over ≈11.87 years. The change in Jupiter’s integral brightness in the V visual filter indicates a more pronounced effect of a 22.1-year Hale magnetic cycle of solar activity. The results of observations in visible light in 1960—1995 and 2012—2019 showed a synchronous delay of several years as a reaction on a 21 % change of the influx to different hemispheres when the planet moves in orbit. In 1995—2012 a disagreement was observed between the dependence of AJ, the index of solar activity Sn and the mode of irradiation of Jupiter by the Sun due to its orbital motion. After 2012, the course of the time dependence of these three parameters again became consistent, restoring the periodicity in the changes in the photometric characteristics of the northern and southern hemispheres of Jupiter.

Keywords: atmosphere, Jupiter, seasonal variations
References: 

1. Vidmachenko A. P. (1982) The electrophotometry of Saturn. I - The distribution of brightness over the equatorial regions in the spectral range of 0.3—0.6 micron. Astrometriia i Astrofizika. № 47. P. 70—75. (in Russian)

2. Vidmachenko A. P. (1984) Electrophotometry of Saturn. II - Spectral brightness distribution along the central meridian. Astrometriia i Astrofizika. № 51. P. 56—62. (in Russian)

3. Vidmachenko A. P. (1991) Giant planets — Theoretical and observational aspects. Astronomicheskii Vestnik. 25, May-June 1991. P. 277—292. (in Russian)

4. Gaisin S. M. (1979) Photoelectric spectrophotometry of Jupiter at 0.32—0.60 microns. Trudy Astrofizicheskogo Instituta AN KazSSR. P. 45—65. (in Russian)

5. Rubashev B. M. (1964) Problemy solnechnoi aktivnosti. M: Nauka. 563 p. (in Russian)

6. Sorokina L. P. (1973) Maximal contrasts on the Jovian disk in 1962—1969. Astronomicheskii Tsirkulyar. № 749. P. 4—7. (in Russian)

7. Fesenkov V. G. (1955) Yavleniya, nablyudayemyye na Yupitere. Proiskhozhdeniye temnykh polos. Izvestiya Astrofiz. in-ta. AN Kaz. SSR. 1, № 1-2. С. 239—251. (in Russian)

8. Banos C. J. (1971) Contribution to the study of the Jupiter’s atmosphere. Icarus. 15, № 1. P. 58—67.
https://doi.org/10.3103/S0884591314050031

9. Beebe R. F., Orton G. S., West R. A. (1989) Time-variable nature of the Jovian cloud properties and thermal structure. Time variable phenomena in the Jovian system. Washington: NASA. P. 245—296.

10. Beebe R. F., Suggs R. M., Little T. (1986) Seasonal north-thouth asymmetry in solar radiation incident on Jupiter’s atmosphere. Icarus. 66, № 2. P. 359—365.
https://doi.org/10.1016/0019-1035(86)90164-8

11. de Vaucouleurs G. (1970) Photométrie des surfaces planétaires. Surfaces and interiors of planets and satellites. P. 225—316.

12. Focas J. H. (1971) Activity in Jupiter’s atmospheric belts between 1904—1963. Icarus. 15, № 1. P. 56—57.
https://doi.org/10.1016/0019-1035(71)90033-9

13. Focas J. H., Banos C. J. (1964) Photometric study of the atmospheric activity on the planet Jupiter and peculiar activity in the equatorial area. Ann. Astrophys. 27. P. 36—45.

14. Hays D. L., Latham D. A., Hays S. (1975) Measurements of the monochromatic flux from Vega. Astrophys. J. 197, № 3, part 1. P. 587—592.
https://doi.org/10.1086/153547

15. Irvin V. M., Simon T., Menzel D. H. (1968) Multicolor photoelectric photometry of the brighter planets. II. Observation from Le Houga Observatory. Astron. J. 73, № 4. P. 251—264.
https://doi.org/10.1086/110626

16. Irvin V. M., Simon T., Menzel D. H. (1968) Multicolor photoelectric photometry of the brighter planets. III. Observation from Boyden Observatory. Astron. J. 73, № 8. P. 807—823.
https://doi.org/10.1086/110702

17. Klimenko V. M., Morozhenko A. V., Vid’Machenko A. P. (1980) Phase effect for the brightness coefficient of the central disk of Saturn and features of Jupiter’s disk. Icarus. 42, June 1980. P. 354—357.
https://doi.org/10.1016/0019-1035(80)90101-3

18. Kostiuk T., Espenak F., Mumma M. J. et al. (1982) Variability of methane on Jupiter. Icarus. 72, № 2. P. 394—410.
https://doi.org/10.1016/0019-1035(87)90182-5

19. Kuznyetsova Yu., Matsiaka O. ShliakhetskayaYa. Krushevska V., Vidmachenko A., Andreev M., Sergeev A. (2014) Spectral Researches of Solar System Giant Planets Using 2-m Telescope at the Peak Terskol. Contribs Astron. Observ. Skalnaté Pleso. 43, № 3. P. 461.

20. Morozhenko A. V. (1990) Zones and Belts of the Disk of Jupiter - Layer above the Clouds. Solar System Research. 24, № 3. P. 134.

21. Morozhenko A. V., Ovsak A. S., Vid’machenko A. P., Teifel V. G., Lysenko P. G. (2016) Imaginary part of the refractive index of aerosol in latitudinal belts of Jupiter’s disc. Kinematics Phys. Celestial Bodies. 32, № 1. P. 30—37.
https://doi.org/10.3103/S0884591316010062

22. Orton G. S. (1975) Spatially resolved absolute spectral reflectivity of Jupiter: 3390 — 8400 A. Icarus. 26, № 1. P. 159—174.
https://doi.org/10.1016/0019-1035(75)90077-9

23. Orton G. S., Yanamandra-Fisher P. A., Caldwell J., et al. (1994) Spatial organization and time dependence of Jupiter’s tropospheric temperatures, 1980—1993. Science. 265. P. 625—631.
https://doi.org/10.1126/science.265.5172.625

24. Ovsak A. S., Teifel V. G., Vid’machenko A. P., Lysenko P. G. (2015) Zonal differences in the vertical structure of the cloud cover of Jupiter from the measurements of the methane absorption bands at 727 and 619 nm. Kinematics Phys. Celestial Bodies. 31. № 3. P. 119—130.
https://doi.org/10.3103/S0884591315030058

25. Peek B. M. (1958) The planet Jupiter. London: Faber & Faber. 456 p.

26. Pilcher C. B., McCord T. B. (1971) Narrow-band photometry of the bands of Jupiter. Astrophys. J. 165. P. 195—201.
https://doi.org/10.1086/150887

27. Prinz R. (1971) The atmospheric activity of the planet Jupiter. I. From 1964 to 1968 in yellow light. Icarus. 15, № 1. P. 68—73.
https://doi.org/10.1016/0019-1035(71)90035-2

28. Prinz R. (1971) The atmospheric activity of the planet Jupiter. II. Short-term variations in five spectral ranges. Icarus. 15, № 1. P. 73—79.
https://doi.org/10.1016/0019-1035(71)90036-4

29. Reese E. J., Smith B. A. (1966) A rapidly moving spot on Jupiter’s north temperate belt. Icarus. 5, № 3. P. 248—257.
https://doi.org/10.1016/0019-1035(66)90034-0

30. Sanchez-Lavega A., Rodrigo R. (1985) Ground-based observations of synoptic cloud systems in southern equatorial to temperate latitudes of Jupiter from 1975 to 1983. Astron. Astrophys. 148. P. 67—78.

31. Shalygina O. S., Korokhin V. V., Starukhina L. V., Shalygin E. V., Marchenko G. P. Velikodsky Yu. I., Starodubtseva O. M., Akimov L. A. (2008) The north-south asymmetry of polarization of Jupiter: The causes of seasonal variations. Solar System Research. 42, Issue 1. P. 8—17.
https://doi.org/10.1134/S0038094608010024

32. Shliakhetska Ya. O., Vidmachenko A. P. (2019) About radiation constant of the atmosphere at cloudiness level according to Jupiter’s photometry in 1960—2018. 50th Lunar and Planetary Science Conference 18-22 March, 2019, held at The Woodlands, Texas LPI Contribution No. 2083, id.1143.

33. Shliakhetska Ya. O., Vidmachenko A. P. (2018) Changes in the Activity of the Hemispheres of Jupiter in 2016—2017 Again Became Close to Periodic. 49th Lunar and Planetary Science Conference 19—23 March, 2018, held at The Woodlands, Texas LPI Contribution N. 2083, id.1079.

34. Smith B. A., Hunt G. E. (1976) Motions and morphology of clouds in the atmosphere of Jupiter. Jupiter: Studies of the interior, atmosphere, magnetosphere and satellites, Tucson, University of Arizona Press, P. 564—585.

35. Starodubtseva O. M., Akimov L. A., Korokhin V. V. (2002) Seasonal variation of the north-south asymmetry of polarized light of Jupiter. Icarus. 157, № 2, P. 419—425.
https://doi.org/10.1006/icar.2002.6820

36. Steklov A. F., Vidmachenko A. P., Miniailo N. F. (1983) Seasonal variations in the atmosphere of Saturn. Soviet Astronomy Letters. 1983. 9, Mar.-Apr. P. 135, 136.

37. Tejfel V. G., Vdovichenko V. D., Sinyaeva N. V., et al. (1994) Spectrophotometry of zonal cloud structure variations on Jupiter, 1988—1993. J. Geophys. Res. 99, № E4. P. 8411—8423.
https://doi.org/10.1029/94JE00609

38. Vidmachenko A. P. (1981) Absolute electrophotometry of features of Saturn’s disc. Phys. planet. atmospheres. P. 113—132.

39. Vidmachenko A. P. (1985) Reflectivity of Saturn’s south equatorial region from 1977 through 1981. Solar System Research. 18, № 3, Jan. 1985. P. 123—128.

40. Vidmachenko A. P. (1985) Activity of processes in the atmosphere of Jupiter. Kinematics Phys. Celestial Bodies. 1, № 5. P. 101—102.

41. Vidmachenko A. P. (1986) Some dynamical parameters of the atmosphere of Jupiter. Kinematics Phys. Celestial Bodies. 2, № 1. P. 54—57.

42. Vidmachenko A. P. (1987) Manifestation of seasonal variations in the atmosphere of Saturn. Kinematics Phys. Celestial Bodies. 3, № 6. P. 9—12.

43. Vidmachenko A. P. (1988) Observable signs of internal waves in Jupiter’s atmosphere. Kinematics Phys. Celestial Bodies. 4, № 4. P. 40—46.

44. Vidmachenko A. P. (1994) Variations in the brightness of celestial objects in astronomical observations mount Maidanak. Kinematics Phys. Celestial Bodies. 10, № 5. P. 52—56.

45. Vidmachenko A. P. (1995) Settling of dust in Jupiter’s atmosphere after the impact of fragments of comet Shoemaker-Levy 9. Kinematics Phys. Celestial Bodies. 11, № 4. P. 14—16.

46. Vidmachenko A. P. (1997) Temporal changes in methane absorption in Jupiter’s atmosphere. Kinematics Phys. Celestial Bodies. 13, № 6. P. 21—25.

47. Vidmachenko A. P. (1999) Seasonal variations in the optical characteristics of Saturn’s atmosphere. Kinematics Phys. Celestial Bodies. 15, № 5. P. 320—331.

48. Vidmachenko A. P. (1999) Variations in Reflective Characteristics of Jupiter’s Atmosphere. Solar System Research. 33. P. 464—469.

49. Vid’machenko A. P. (2002) Brightness variations on Jupiter and free oscillations in its atmosphere. Kinematics Phys. Celestial Bodies. 18, № 3. P. 157—167.

50. Vidmachenko A. P. (2015) Seasons on Saturn. 1. Changes in reflecting characteristics of the atmosphere at 1964—2012. Astronomical School’s Report. 11, № 1. P. 37—45.
https://doi.org/10.18372/2411-6602.11.1001

51. Vidmachenko A. P. (2015) Seasons on Saturn. II. Influence of solar activity on variation of methane absorption. Astronomical School’s Report. 11, № 2. P. 133—142.
https://doi.org/10.18372/2411-6602.11.1015

52. Vidmachenko A. P. (2015) Influence of solar activity on seasonal variations of methane absorption in the atmosphere of Saturn. Kinematics Phys. Celestial Bodies. 31, № 3. Р. 131—140.
https://doi.org/10.3103/S088459131503006X

53. Vidmachenko A. P. (2015) Influence of solar activity on the seasonal variation of methane absorption at Saturn. 17 International scientific conference Astronomical School of Young Scientists, held May 20-22, 2015 in Zhytomyr, Ukraine. The program and abstracts. P. 14—16.
https://doi.org/10.3103/S088459131503006X

54. Vidmachenko A. P. (2016) Periodic changes in the activity of Jupiter’s hemispheres. 47th Lunar and Planetary Science Conference, held March 21—25, 2016 at The Woodlands, Texas. LPI Contribution № 1903. P. 1091.

55. Vidmachenko A. P. (2016) Seasonal changes on Jupiter. I. The factor activity of hemispheres. Kinematics Phys. Celestial Bodies. 32, № 4. P. 189—195.
https://doi.org/10.3103/S0884591316040073

56. Vidmachenko A. P. (2016) Seasonal Changes on Jupiter: 2. Influence of the Planet Exposure to the Sun. Kinematics Phys. Celestial Bodies. 32, № 6. P. 283—293.
https://doi.org/10.3103/S0884591316060076

57. Vidmachenko A. P. (2018) Periodicity in changes of Jupiter’s hemispheres activity factor is continues to recover in 2018. 20 International scientific conference Astronomical School of Young Scientists. May 23—24 2018. The program and abstracts. Uman, Ukraine. P. 93—95.

58. Vidmachenko A. P., Dlugach Zh. M., Morozhenko A. V. (1984) Nature of the optical nonuniformity in Saturn’s disk. Solar System Research. 17. № 4. March 1984. P. 164—171.

59. Vidmachenko A. P., Klimenko V. M., Morozhenko A. V. (1980) Multicolor photometry of features on the disk of Jupiter. I - Relative spectrophotometry in the 1977—1978 observing period. Solar System Research. 14, № 2. Oct. 1980. P. 62—67.

60. Vidmachenko A. P., Steklov A. F., Minyailo N. F. (1984) Seasonal activity on Jupiter. Soviet Astronomy Letters. 10.