Parameters of the infrasonic signal generated by the Kamchatka meteoroid
1Chernogor, LF, 2Liashchuk, OI, 1Shevelev, MB 1V.N. Karazin Kharkiv National University, Kharkiv, Ukraine 2Main Center of Special Monitoring, Gorodok, Ukraine |
Kinemat. fiz. nebesnyh tel (Online) 2020, 36(5):31-54 |
https://doi.org/10.15407/kfnt2020.05.031 |
Start Page: Dynamics and Physics of Bodies of the Solar System |
Language: Ukrainian |
Abstract: The subject of this study is the infrasonic signal generated by a high-speed (32 km/s), high-energy (173 kt TNT), and large-sized (9.4 m) celestial body, later called the Kamchatka meteoroid, which entered the terrestrial atmosphere and exploded on 18 December 2018. The object of the study is the parameters of the infrasonic signal launched by the Kamchatka meteoroid. The study is based on the data on temporal dependences of pressure in the infrasonic wave collected by the I53US, I30JP, I59US, I46RU, I57US, and MAAG2 infrasonic stations included in the International Monitoring System (IMS) set up by Comprehensive Nuclear-Test-Ban Treaty Organization’s International Monitoring System (CTBTO). The measurement data initially recorded on a relative scale have been converted into absolute values. Then, the temporal dependences of infrasonic wave pressure underwent filtering in the 1...40-s period range, and subsequently, were subjected to the system spectral analysis that includes the mutually complementary short-time Fourier transform, the Fourier transform in a sliding window with a width adjusted to be equal to a fixed number of harmonic periods, and the wavelet transform with the Morlet wavelet used as the basis function. In the research results we obtained that infrasonic signal amplitude exhibits a quite rapid decrease with distance from an infrasonic station to the meteoroid explosion point. The time delay of the infrasonic signal shows an increase with distance from the point of the celestial body explosion to the site of signal registration. The signal celerity exhibits a dependence on the distance and the path orientation, and it is estimated to be in the 269...308-m/s range. The infrasonic signal duration shows virtually no dependence on the distance from the detonation point to an infrasonic station. The infrasonic signal spectra exhibit a wide bandwidth, from ~ 5-s to ~ 40-s periods. At the same time, the greatest energy falls within the isolated period ranges of 12...15 s and 28...33 s. The scatter diagrams and regressions for infrasound main parameters was plotted. From infrasonic period the celestial body kinetic energy (179 kt TNT) and acoustic efficiency (~4 %) was estimated. |
Keywords: fitted dependences, infrasonic signal, main parameters, meteoroid |
1. V. V. Adushkin, A. P. Popova, Yu. S. Rybnov, V. N. Kudryavtsev, A. L. Mal’tsev, and V. A. Kharlamov. Geophysical effects of the Vitim bolide, Dokl. Earth Sci. 397, 861–864 (2004).
2. E. E. Gossard and W. H. Hooke, Waves in the Atmosphere: Atmospheric Infrasound and Gravity Waves, Their Generation and Propagation (Developments in Atmospheric Science) (Elsevier, Amsterdam, 1975; Mir, Moscow, 1978).
3. V. V. Emel’yanenko, O. P. Popova, N. N. Chugai, M. A. Shelyakov, Yu. V. Pakhomov, B. M. Shustov, V. V. Shuvalov, E. E. Biryukov, Yu. S. Rybnov, M. Ya. Marov, L. V. Rykhlova, S. A. Naroenkov, A. P. Kartashova, V. A. Kharlamov, and I. A. Trubetskaya. Astronomical and physical aspects of the Chelyabinsk event (February 15, 2013), Sol. Syst. Res. 47, 240–254 (2013).
https://doi.org/10.1134/S0038094613040114
4. O. V. Lazorenko and L. F. Chernogor. System spectral analysis of infrasonic signal generated by Chelyabinsk meteoroid, Radioelectron. Commun. Syst. 60, 331–338 (2017).
https://doi.org/10.3103/S0735272717080015
5. O. P. Popova, V. V. Shuvalov, Yu. S. Rybnov, V. A. Kharlamov, D. O. Glazachev, V. V. Emel’yanenko, A. P. Kartashova, and P. Jenniskens. Chelyabinsk meteoroid parameters: Data analysis, in Dynamic Processes in Geospheres: Collection of Scientific Papers of the Institute of Geosphere Dynamics of the Russian Academy of Sciences (Geos, Moscow, 2013), Vol. 4, pp. 10–21 [in Russian].
6. Yu. S. Rybnov, O. P. Popova, V. A. Kharlamov, A. V. Solov’ev, Yu. S. Rusakov, A. G. Glukhov, E. Silber, E. D. Podobnaya, and D. V. Surkova. Energy estimation of Chelyabinsk bolide using infrasound measurements, in Dynamic Processes in Geospheres: Collection of Scientific Papers of the Institute of Geosphere Dynamics of the Russian Academy of Sciences (Geos, Moscow, 2013), Vol. 4, pp. 21–32 [in Russian].
7. Yu. S. Rybnov, O. P. Popova, and V. A. Kharlamov. The energy estimation of the Chelyabinsk meteoroid by the power spectra of long-periods oscillations of the atmospheric pressure, in Dynamic Processes in Geospheres: Collection of Scientific Papers of the Institute of Geosphere Dynamics of the Russian Academy of Sciences (Geos, Moscow, 2014), Vol. 5, pp. 78–86 [in Russian].
8a. A. G. Sorokin. Infrasonic radiation of Chelyabinsk meteoroid, Soln.-Zemn. Fiz., No. 24, 58–63 (2013);
8b. A. G. Sorokin. On infrasonic radiation of Chelyabinsk meteoroid, in Radio Waves Propagation (Proc. 24th All-Russian Sci Conf., Irkutsk, Russia, 29 Jun. 29 –Jul. 5,2014), Ed. by V. I. Kurkin (Sib. Otd. Ross. Akad. Nauk, Irkutsk, 2014), pp. 242–245.
9. L. F. Chernogor. Advanced methods of spectral analysis of quasiperiodic wave-like processes in the ionosphere: Specific features and experimental results, Geomagn. Aeron. (Engl. Transl.) 48, 652–673 (2008).
https://doi.org/10.1134/S0016793208050101
10. L. F. Chernogor. Oscillations of the geomagnetic field caused by the flight of Vitim bolide on September 24, 2002, Geomagn. Aeron. (Engl. Transl.) 51, 116–130 (2011).
https://doi.org/10.1134/S0016793211010038
11. L. F. Chernogor, Physics and Ecology of Disasters (Khark. Nats. Univ. im. V. N. Karazina, Kharkiv, 2012) [in Russian].
12. L. F. Chernogor. Chelyabinsk meteoroid acoustic effects, Radiofiz. Radioastron. 22, 53–66 (2017) [in Russian].
https://doi.org/10.15407/rpra22.01.053
13. L. F. Chernogor. Parameters of acoustic signals generated by the atmospheric meteoroid explosion over Romania on January 7, 2015, Sol. Syst. Res. 52, 206–222 (2018).
https://doi.org/10.1134/S0038094618030048
14. L. F. Chernogor and A. I. Lyashchuk. Parameters of infrasonic waves generated by the Chelyabinsk meteoroid on February 15, 2013, Kinematics Phys. Celestial Bodies 33, 79–87 (2017).
https://doi.org/10.3103/S0884591317020027
15. L. F. Chernogor and A. I. Lyashchuk. Infrasound observations of the bolide explosion over Romania on January 7, 2015, Kinematics Phys. Celestial Bodies 33, 276–290 (2017).
https://doi.org/10.3103/S0884591317060022
16. L. F. Chernogor and N. B. Shevelev. Infrasound wave generated by the Tunguska celestial body: Amplitude dependence on distance, Radiofiz. Radioastron. 23, 94–103 (2018) [in Russian].
https://doi.org/10.15407/rpra23.02.094
17. L. F. Chernogor and N. B. Shevelev. Parameters of the infrasound signal generated by a meteoroid over Indonesia on October 8, 2009, Kinematics Phys. Celestial Bodies 34, 147–160 (2018).
https://doi.org/10.3103/S0884591318030030
18. L. F. Chernogor and N. B. Shevelev. Characteristics of the infrasound signal generated by Chelyabinsk celestial body: Global statistics, Radiofiz. Radioastron. 23, 24–35 (2018) [in Russian].
https://doi.org/10.15407/rpra23.01.024
19. L. F. Chornogor and M. B. Shevelev. Characteristics of infrasonic signal generated by the Lipetsk meteoroid: Statistical analysis, Kinematics Phys. Celestial Bodies 36 (4), 186–194 (2020).
https://doi.org/10.3103/S0884591320040030
20. M. I. Avramenko, I. V. Glazyrin, G. V. Ionov, and A. V. Karpeev. Simulation of the airwave caused by the Chelyabinsk superbolide, J. Geophys. Res.: Atmos. 119, 7035–7050 (2014).
https://doi.org/10.1002/2013JD021028
21. P. G. Brown, P. Kalenda, D. O. ReVelle, and J. Borovička. The Morávka meteorite fall: 2. Interpretation of infrasonic and seismic data, Meteorit. Planet. Sci. 38, 989–1003 (2003).
https://doi.org/10.1111/j.1945-5100.2003.tb00294.x
22. D. R. Christie and P. Campus. The IMS infrasound network: Design and establishment of infrasound stations, in Infrasound Monitoring for Atmospheric Studies, Ed. by A. Le Pichon, E. Blanc, and A. Hauchecorne (Springer-Verlag, Dordrecht, 2010), pp. 27–73.
https://doi.org/10.1007/978-1-4020-9508-5_2
23. Infrasound Monitoring for Atmospheric Studies, Ed. by A. Le Pichon, E. Blanc, and A. Hauchecorne (Springer-Verlag, Dordrecht, 2010).
24. Infrasound Monitoring for Atmospheric Studies, Ed. by A. Le Pichon, E. Blanc, and A. Hauchecorne (Springer-Verlag, Switzerland, 2019).
25. A. Le Pichon, L. Ceranna, C. Pilger, P. Mialle, D. Brown, P. Herry, and N. Brachet. The 2013 Russian fireball largest ever detected by CTBTO infrasound sensors, Geophys. Res. Lett. 40, 3732–3737.
https://doi.org/10.1002/grl.50619
26. J. Oberst, S. Molau, D. Heinlein, C. Gritzner, M. Schindler, P. Spurny, Z. Ceplecha, J. Rendtel, and H. Betlem. The "European Fireball Network: Current status and future prospects, Meteorit. Planet. Sci. 33, 49–56 (1998).
https://doi.org/10.1111/j.1945-5100.1998.tb01606.x
27. T. Ott, E. Drolshagen, D. Koschny, P. Mialle, C. Pilger, J. Vaubaillon, G. Drolshagen, and B. Poppe. Combination of infrasound signals and complementary data for the analysis of bright fireballs, Planet. Space Sci. 179, 104715 (2019).
https://doi.org/10.1016/j.pss.2019.104715
28. O. P. Popova, P. Jenniskens, V. Emelyanenko, A. Kartashova, E. Biryukov, S. Khaibrakhmanov, V. Shuvalov, Y. Rybnov, A. Dudorov, V. I. Grokhovsky, D. D. Badyukov, Q.-Z. Yin, P. S. Gural, J. Albers, M. Granvik, L. G. Evers, J. Kuiper, V. Harlamov, A. Solovyov, Y. S. Rusakov, S. Korotkiy, I. Serdyuk, A. V. Korochantsev, M. Y. Larionov, D. Glazachev, A. E. Mayer, G. Gisler, S. V. Gladkovsky, J. Wimpenny, M. E. Sanborn, A. Yamakawa, K. L. Verosub, D. J. Rowland, S. Roeske, N. W. Botto, J. M. Friedrich, M. E. Zolensky, L. Le, D. Ross, K. Ziegler, T. Nakamura, I. Ahn, J. I. Lee, Q. Zhou, X. H. Li, Q. L. Li, Y. Liu, G.-Q. Tang, T. Hiroi, D. Sears, I. A. Weinstein, A. S. Vokhmintsev, A. V. Ishchenko, P. Schmitt-Kopplin, N. Hertkorn, K. Nagao, M. K. Haba, M. Komatsu, and T. Mikouchi. Chelyabinsk airburst, damage assessment, meteorite, and characterization, Science 342, 1069–1073 (2013).
https://doi.org/10.1126/science.1242642
29. O. P. Popova, P. Jenniskens, V. Emelyanenko, A. Kartashova, E. Biryukov, S. Khaibrakhmanov, V. Shuvalov, Y. Rybnov, A. Dudorov, V. I. Grokhovsky, D. D. Badyukov, Q.-Z. Yin, P. S. Gural, J. Albers, M. Granvik, L. G. Evers, J. Kuiper, V. Harlamov, A. Solovyov, Y. S. Rusakov, S. Korotkiy, I. Serdyuk, A. V. Korochantsev, M. Y. Larionov, D. Glazachev, A. E. Mayer, G. Gisler, S. V. Gladkovsky, J. Wimpenny, M. E. Sanborn, A. Yamakawa, K. L. Verosub, D. J. Rowland, S. Roeske, N. W. Botto, J. M. Friedrich, M. E. Zolensky, L. Le, D. Ross, K. Ziegler, T. Nakamura, I. Ahn, J. I. Lee, Q. Zhou, X. H. Li, Q. L. Li, Y. Liu, G.-Q. Tang, T. Hiroi, D. Sears, I. A. Weinstein, A. S. Vokhmintsev, A. V. Ishchenko, P. Schmitt-Kopplin, N. Hertkorn, K. Nagao, M. K. Haba, M. Komatsu, and T. Mikouchi. Supplementary materials for Chelyabinsk airburst, damage assessment, meteorite, and characterization, Science 342 (2013). https://www.sciencemag.org/cgi/content/ full/science.1242642/DC1. Accessed January 30, 2017.
https://doi.org/10.1126/science.1242642
30. D. O. ReVelle. Historical detection of atmospheric impacts by large bolides using acoustic-gravity waves, Ann. N. Y. Acad. Sci. 822, 284–302 (1997).
https://doi.org/10.1111/j.1749-6632.1997.tb48347.x
31. E. A. Silber, A. L. Pichon, and P. G. Brown. Infrasonic detection of a near-Earth object impact over Indonesia on 8 October 2009, Geophys. Res. Lett. 38, L12201 (2011).
https://doi.org/10.1029/2011GL047633